RESUMO
Cancer is commonly considered as one of the most severe diseases, posing a significant threat to human health and society due to various serious challenges. These challenges include difficulties in accurate diagnosis and a high propensity to form metastasis. Tissue biopsy remains the gold standard for diagnosing and subtyping cancer. However, concerns arise from its invasive nature and the potential risk of metastasis during these complex diagnostic procedures. Meanwhile, liquid biopsy has recently witnessed the rapid advancements with the emergence of three prominent detection biomarkers: circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosomes. Whereas, the very low abundance of CTCs combined with the instability of ctDNA intensify the challenges and decrease the accuracy of these two biomarkers for cancer diagnosis. While exosomes have gained widespread recognition as a promising biomarker in liquid biopsy due to their relatively low-invasive detection method, excellent biostability, rich resources, high abundance, and ability to provide valuable information about cancer. Therefore, it is crucial to systematically summarize recent advancements mainly in exosome-based detection methods for early cancer diagnosis. Specifically, this review will primarily focus on label-based and label-free strategies for detecting cancer using exosomes. We anticipate that this comprehensive analysis will enhance readers' understanding of the significance and value of exosomes in the fields of cancer diagnosis and therapy.
RESUMO
We use DNA molecular marker technology to correct the deficiency of traditional morphological taxonomy. Totality 770 Pelteobagrus fish from Poyang Lake were collected. After preliminary morphological classification, random selected eight samples in each species for DNA extraction. Mitochondrial COI gene sequence was cloned with universal primers and sequenced. The results showed that there are four species of Pelteobagrus living in Poyang Lake. The average of intraspecific genetic distance value was 0.003, while the average interspecific genetic distance was 0.128. The interspecific genetic distance is far more than intraspecific genetic distance. Besides, phylogenetic tree analysis revealed that molecular systematics was in accord with morphological classification. It indicated that COI gene is an effective DNA molecular marker in Pelteobagrus classification. Surprisingly, the intraspecific difference of some individuals (P. e6, P. n6, P. e5, and P. v4) from their original named exceeded species threshold (2%), which should be renewedly classified into Pelteobagrus fulvidraco. However, another individual P. v3 was very different, because its genetic distance was over 8.4% difference from original named Pelteobagrus vachelli. Its taxonomic status remained to be further studied.