Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; 24(2): 255-261, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906464

RESUMO

Genomic testing, including single-nucleotide variation (formerly single-nucleotide polymorphism)-based chromosomal microarray and exome and genome sequencing, can detect long regions of homozygosity (ROH) within the genome. Genomic testing can also detect possible uniparental disomy (UPD). Platforms that can detect ROH and possible UPD have matured since the initial American College of Medical Genetics and Genomics (ACMG) standard was published in 2013, and the detection of ROH and UPD by these platforms has shown utility in diagnosis of patients with genetic/genomic disorders. The presence of these segments, when distributed across multiple chromosomes, may indicate a familial relationship between the proband's parents. This technical standard describes the detection of possible consanguinity and UPD by genomic testing, as well as the factors confounding the inference of a specific parental relationship or UPD. Current bioethical and legal issues regarding detection and reporting of consanguinity are also discussed.


Assuntos
Genética Médica , Dissomia Uniparental , Consanguinidade , Genômica , Homozigoto , Humanos , Polimorfismo de Nucleotídeo Único/genética , Estados Unidos
3.
Am J Med Genet A ; 176(6): 1423-1426, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29663647

RESUMO

The NR2F2 gene plays an important role in angiogenesis and heart development. Moreover, this gene is involved in organogenesis in many other organs in mouse models. Variants in this gene have been reported in a number of patients with nonsyndromic atrioventricular septal defect, and in one patient with congenital heart defect and dysmorphic features. Here we report an 11-month-old Caucasian male with global developmental delay, dysmorphic features, coarctation of the aorta, and ventricular septal defect. He was later found to have a pathogenic mutation in the NR2F2 gene by whole exome sequencing. This is the second instance in which an NR2F2 mutation has been identified in a child with a congenital heart defect and other anomalies. This case suggests that some variants in NR2F2 may cause syndromic forms of congenital heart defect.


Assuntos
Fator II de Transcrição COUP/genética , Face/anormalidades , Cardiopatias Congênitas/genética , Mutação , Deficiências do Desenvolvimento/genética , Humanos , Lactente , Masculino
4.
Am J Med Genet A ; 176(12): 2791-2797, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30216695

RESUMO

Phelan-McDermid syndrome (PMS, OMIM 606232) is a heterozygous contiguous gene microdeletion syndrome occurring at the distal region of chromosome 22q13. This deletion encompasses the SHANK3 gene at 22q13.33, which is thought to be the critical gene for the neurodevelopmental features seen in this syndrome. PMS is typically characterized by intellectual disability, autism spectrum disorder, absent to severely delayed speech, neonatal hypotonia, and dysmorphic features. Two patients presenting with classic clinical features of PMS have been reported to have interstitial microdeletions in the 22q13.2 region that map proximal to the SHANK3 gene (0.54 and 0.72 Mb, respectively). Here, we describe a 13-month-old girl with a de novo 1.16 Mb interstitial deletion in the 22q13.2 region who presented with global developmental delay, subtle dysmorphic features, and immunodeficiency. This deletion overlaps with the two previously published cases and five cases from the DECIPHER database. All eight patients share features common to patients with PMS including developmental delay and language delay, which suggests that this represents a previously unrecognized microdeletion syndrome in the 22q13.2 region. Our patient's deletion encompasses the TCF20 and TNFRSF13C genes, which are thought to play causative roles in the patient's neurodevelopmental and immunological features, respectively.


Assuntos
Receptor do Fator Ativador de Células B/genética , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Fenótipo , Fatores de Transcrição/genética , Alelos , Deleção Cromossômica , Cromossomos Humanos Par 22/genética , Hibridização Genômica Comparativa , Análise Citogenética , Feminino , Estudos de Associação Genética , Humanos , Lactente , Mutação
5.
Nat Chem Biol ; 11(11): 855-61, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26368589

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most prevalent multidrug-resistant pathogens worldwide, exhibiting increasing resistance to the latest antibiotic therapies. Here we show that the triple ß-lactam combination meropenem-piperacillin-tazobactam (ME/PI/TZ) acts synergistically and is bactericidal against MRSA subspecies N315 and 72 other clinical MRSA isolates in vitro and clears MRSA N315 infection in a mouse model. ME/PI/TZ suppresses evolution of resistance in MRSA via reciprocal collateral sensitivity of its constituents. We demonstrate that these activities also extend to other carbapenem-penicillin-ß-lactamase inhibitor combinations. ME/PI/TZ circumvents the tight regulation of the mec and bla operons in MRSA, the basis for inducible resistance to ß-lactam antibiotics. Furthermore, ME/PI/TZ subverts the function of penicillin-binding protein-2a (PBP2a) via allostery, which we propose as the mechanism for both synergy and collateral sensitivity. Showing in vivo activity similar to that of linezolid, ME/PI/TZ demonstrates that combinations of older ß-lactam antibiotics could be effective against MRSA infections in humans.


Assuntos
Antibacterianos/farmacologia , Resistência a Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Inibidores de beta-Lactamases/farmacologia , Regulação Alostérica , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Expressão Gênica , Humanos , Linezolida/farmacologia , Meropeném , Resistência a Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/química , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Óperon , Ácido Penicilânico/análogos & derivados , Ácido Penicilânico/farmacologia , Proteínas de Ligação às Penicilinas , Piperacilina/farmacologia , Infecções Estafilocócicas/microbiologia , Tazobactam , Tienamicinas/farmacologia , beta-Lactamases/química , beta-Lactamases/genética , beta-Lactamases/metabolismo
6.
Am J Hum Genet ; 87(1): 154-60, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20598276

RESUMO

Clubfoot is a common musculoskeletal birth defect for which few causative genes have been identified. To identify the genes responsible for isolated clubfoot, we screened for genomic copy-number variants with the Affymetrix Genome-wide Human SNP Array 6.0. A recurrent chromosome 17q23.1q23.2 microduplication was identified in 3 of 66 probands with familial isolated clubfoot. The chromosome 17q23.1q23.2 microduplication segregated with autosomal-dominant clubfoot in all three families but with reduced penetrance. Mild short stature was common and one female had developmental hip dysplasia. Subtle skeletal abnormalities consisted of broad and shortened metatarsals and calcanei, small distal tibial epiphyses, and thickened ischia. Several skeletal features were opposite to those described in the reciprocal chromosome 17q23.1q23.2 microdeletion syndrome associated with developmental delay and cardiac and limb abnormalities. Of note, during our study, we also identified a microdeletion at the locus in a sibling pair with isolated clubfoot. The chromosome 17q23.1q23.2 region contains the T-box transcription factor TBX4, a likely target of the bicoid-related transcription factor PITX1 previously implicated in clubfoot etiology. Our result suggests that this chromosome 17q23.1q23.2 microduplication is a relatively common cause of familial isolated clubfoot and provides strong evidence linking clubfoot etiology to abnormal early limb development.


Assuntos
Cromossomos Humanos Par 17/genética , Pé Torto Equinovaro/genética , Proteínas com Domínio T/genética , Anormalidades Múltiplas/genética , Adulto , Criança , Pré-Escolar , Feminino , Duplicação Gênica , Humanos , Masculino , Anormalidades Musculoesqueléticas/genética , Linhagem , Penetrância
7.
Am J Clin Pathol ; 160(5): 490-499, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37458189

RESUMO

OBJECTIVES: SRSF2 mutations are known to be associated with poor outcomes in myelodysplastic neoplasm, but studies on their prognostic impact on acute myeloid leukemia (AML) remain limited. In this retrospective study, we analyzed clinical and pathologic characteristics of patients with AML and correlated the outcomes with SRSF2 mutations. METHODS: We characterized the morphologic, immunophenotypic, molecular, and clinical findings in AML with mutated SRSF2 and compared them with SRSF2 wild-type (WT) myeloid neoplasms (MNs). RESULTS: Using next-generation sequencing, we identified 134 patients with MNs and SRSF2 mutations (85 with AML and 49 with MNs) in addition to 342 SRSF2-WT AMLs. Fifty-two (62%) patients with altered SRSF2 demonstrated a variable degree of morphologic dysplasia. The most frequent immunophenotypic aberrancies in SRSF2-mutant AML included diminished CD33 expression and overexpression of CD7, CD56, or CD123, similar to WT AML. More IDH1/2 (P = .015) and NPM1 (P = .002) mutations were seen in SRSF2-mutant AML than in SRSF2-mutant non-AML. Further, more IDH1/2, ASXL1, RUNX1, and STAG2 mutations were observed in SRSF2-mutant AML than in SRSF2-WT AML (P < .0001 to P = .001). Finally, patients with SRSF2-mutant AML showed a significantly worse overall survival (OS) than patients with SRSF2-WT AML (P < .0001), but this worse OS appeared to be rescued by allogeneic stem cell transplant (allo-SCT). CONCLUSIONS: Acute myeloid leukemia with altered SRSF2 shows a variable degree of morphologic dysplasia without uniform immunophenotypic aberrancies. SRSF2 mutations appear to be independent poor prognostic factors, but allo-SCT has improved the clinical outcomes in patients with SRSF2-mutant AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Estudos Retrospectivos , Leucemia Mieloide Aguda/genética , Prognóstico , Proteínas de Ligação a RNA/genética , Mutação , Biologia Molecular , Fatores de Processamento de Serina-Arginina/genética
8.
Case Rep Hematol ; 2020: 8822670, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33489389

RESUMO

Acute myeloid leukemia (AML) with inv(16)(p13.1q22) resulting in CBFB-MYH11 fusion is associated with a favorable prognosis. The presence of a KIT mutation modifies it to an intermediate prognosis. Additionally, inv(16) can cooperate with other genetic aberrations to further increase cell proliferation. Coexistence of inv(16) and t(9;22) is extremely rare (20 cases). We present a case of a 55-year-old male with elevated white blood cell count. Bone marrow evaluation and flow cytometry analysis were compatible with AML with monocytic features. Cytogenetic studies revealed two-related clones, a minor clone with inv(16) and a major clone with concurrent inv(16) and t(9;22) rearrangements. Fluorescent in situ hybridization studies confirmed these rearrangements. Molecular analysis detected a p190 BCR-ABL1 transcript protein. KIT mutations were negative. The patient was initially treated with standard induction regimen; 7 daily doses of cytarabine from day 1-day 7, 3 daily doses of daunorubicin from day 1-day 3, and 1 dose of Mylotarg (gemtuzumab ozogamicin) on day 1. The detection of t(9;22) led to the addition of daily doses of dasatinib (tyrosine kinase inhibitor) from day 7 onwards. The patient achieved complete remission on day 45. During his treatment course, he acquired disseminated Fusarium infection. Day 180 bone marrow evaluation revealed florid relapse with 64% blasts. Cytogenetic study showed clonal evolution of the inv(16) clone with no evidence of the t(9;22) subclone. Eventually, bone marrow transplantation was contraindicated, and the patient was transferred to palliative care. Literature review revealed that AML with co-occurrence of CBFB-MYH11 and BCR-ABL1 gene rearrangements was involved by only a small number of cases with de novo and therapy-related AML. Most cases were in myeloid blast crisis of chronic myeloid leukemia (CML). Treatment and prognosis among the de novo AML cases varied and majority of them achieved clinical remission. In contrast, these cytogenetic abnormalities in the blast phase of CML had a poor prognosis. As the prognosis and management of AML is dependent upon the underlying genetic characteristics of the neoplasm, it is imperative to include clinical outcome with such rare combinations of genetic alterations.

9.
Biochim Biophys Acta ; 1774(11): 1431-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17905675

RESUMO

Blood clotting proceeds through the sequential proteolytic activation of a series of serine proteases, culminating in thrombin cleaving fibrinogen into fibrin. The serine protease inhibitors (serpins) antithrombin (AT) and protein C inhibitor (PCI) both inhibit thrombin in a heparin-accelerated reaction. Heparin binds to the positively charged D-helix of AT and H-helix of PCI. The H-helix of AT is negatively charged, and it was mutated to contain neutral or positively charged residues to see if they contributed to heparin stimulation or protease specificity in AT. To assess the impact of the H-helix mutations on heparin stimulation in the absence of the known heparin-binding site, negative charges were also introduced in the D-helix of AT. AT with both positively charged H- and D-helices showed decreases in heparin stimulation of thrombin and factor Xa inhibition by 10- and 5-fold respectively, a decrease in affinity for heparin sepharose, and a shift in the heparin template curve. In the absence of a positively charged D-helix, changing the H-helix from neutral to positively charged increased heparin stimulation of thrombin inhibition 21-fold, increased heparin affinity and restored a normal maximal heparin concentration for inhibition.


Assuntos
Anticoagulantes/metabolismo , Antitrombinas/genética , Antitrombinas/metabolismo , Heparina/metabolismo , Sequência de Aminoácidos , Animais , Antitrombinas/química , Linhagem Celular , Humanos , Mutagênese Sítio-Dirigida , Conformação Proteica , Spodoptera
10.
Cancer Prev Res (Phila) ; 11(10): 655-664, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30104415

RESUMO

NF1 germline mutation predisposes to breast cancer. NF1 mutations have also been proposed as oncogenic drivers in sporadic breast cancers. To understand the genomic and histologic characteristics of these breast cancers, we analyzed the tumors with NF1 germline mutations and also examined the genomic and proteomic profiles of unselected tumors. Among 14 breast cancer specimens from 13 women affected with neurofibromatosis type 1 (NF1), 9 samples (NF + BrCa) underwent genomic copy number (CN) and targeted sequencing analysis. Mutations of NF1 were identified in two samples and TP53 were in three. No mutation was detected in ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, NBN, PALB2, PTEN, RAD50, and STK11 HER2 (ErbB2) overexpression was detected by IHC in 69.2% (9/13) of the tumors. CN gain/amplification of ERBB2 was detected in 4 of 9 with DNA analysis. By evaluating HER2 expression and NF1 alterations in unselected invasive breast cancers in TCGA datasets, we discovered that among samples with ERBB2 CN gain/amplification, the HER2 mRNA and protein expression were much more pronounced in NF1-mutated/deleted samples in comparison with NF1-unaltered samples. This finding suggests a synergistic interplay between these two genes, potentially driving the development of breast cancer harboring NF1 mutation and ERBB2 CN gain/amplification. NF1 gene loss of heterozygosity was observed in 4 of 9 NF + BrCa samples. CDK4 appeared to have more CN gain in NF + BrCa and exhibited increased mRNA expression in TCGA NF1--altered samples. Cancer Prev Res; 11(10); 655-64. ©2018 AACR.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença , Neurofibromatose 1/genética , Neurofibromina 1/genética , Receptor ErbB-2/genética , Neoplasias da Mama/patologia , Quinase 4 Dependente de Ciclina/genética , Análise Mutacional de DNA , Conjuntos de Dados como Assunto , Feminino , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Mutação em Linhagem Germinativa , Humanos , Perda de Heterozigosidade , Neurofibromatose 1/complicações , Receptor ErbB-2/metabolismo
11.
Genet Med ; 9(9): 632-41, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17873652

RESUMO

Clinical testing using various array comparative genomic hybridization platforms is being incorporated rapidly into cytogenetic testing algorithms. Comprehensive validation of these complex assays presents unique challenges and very few studies reporting the validation of commercially available array platforms have been published. Sixty-seven patients with previously defined subtelomere abnormalities, representing deletions and/or duplications of all 41 clinically relevant sites, were tested in a blinded study using the Spectral Genomics Constitutional Chip 3.0. Overall, 72 of 74 (97%) subtelomeric abnormalities were concordant with previous cytogenetic studies. However, two false-negative results were documented, and issues with mismapped and suboptimal clone performance were identified that may result in failure to detect 6q and 20q subtelomeric abnormalities. The results of this study indicate that comprehensive validation is necessary before implementation of array comparative genomic hybridization platforms into a clinical setting. Specific suggestions for validation are discussed in the context of the recently proposed American College of Medical Genetics guidelines for microarray analysis for constitutional cytogenetic abnormalities.


Assuntos
Genoma Humano , Genômica , Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reprodutibilidade dos Testes , DNA/análise , Dosagem de Genes , Variação Genética , Guias como Assunto , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Análise de Sequência com Séries de Oligonucleotídeos/normas , Sensibilidade e Especificidade
12.
Curr Hematol Malig Rep ; 12(6): 568-573, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29064023

RESUMO

PURPOSE OF REVIEW: Acute myeloid leukemia (AML) is a hematologic neoplasia consisting of incompletely differentiated hematopoietic cells of the myeloid lineage that proliferate in the bone marrow, blood, and/or other tissues. Clinical implementation of fluorescence in situ hybridization (FISH) in cytogenetic laboratories allows for high-resolution analysis of recurrent structural chromosomal rearrangements specific to AML, especially in AML with normal karyotypes, which comprises approximately 33-50% of AML-positive specimens. Here, we review the use of several FISH probe strategies in the diagnosis of AML. We also review the standards and guidelines currently in place for use by clinical cytogenetic laboratories in the evaluation of AML. RECENT FINDINGS: Updated standards and guidelines from the WHO, ACMG, and NCCN have further defined clinically significant, recurring cytogenetic anomalies in AML that are detectable by FISH. FISH continues to be a powerful technique in the diagnosis of AML, with higher resolution than conventional cytogenetic analysis, rapid turnaround time, and a considerable diagnostic and prognostic utility.


Assuntos
Hibridização in Situ Fluorescente/métodos , Leucemia Mieloide Aguda/diagnóstico por imagem , Feminino , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Prognóstico
13.
Curr Protoc Hum Genet ; 89: 8.1.1-8.1.13, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037488

RESUMO

Chromosome analysis is one of the first approaches to genetic testing and remains a key component of genetic analysis of constitutional and somatic genetic disorders. Numerical or unbalanced structural chromosome abnormalities usually lead to multiple congenital anomalies. Sometimes these are compatible with live birth, usually resulting in severe cognitive and physical handicaps; other times they result in miscarriage or stillbirth. Chromosome rearrangements also occur as somatic changes in malignancies. Identification of constitutional chromosomal anomalies (anomalies present in most or all cells of the body and/or the germline) can provide important information for genetic counseling. In this unit, we introduce chromosomal microarray analysis (CMA), which is a relatively recent addition to cytogenetic technologies, and has become the recommended first-tier testing method for patients with developmental delay, intellectual disability, autism, and/or multiple congenital anomalies. We also discuss non-invasive prenatal testing/screening (NIPTS), which uses circulating cell-free fetal DNA (cfDNA) from maternal plasma to rapidly screen for autosomal and sex-chromosome aneuploidies. Cytogenetic analysis of tumors is helpful in diagnosis and in monitoring the effects of treatment. The protocols in this chapter cover the clinical study of chromosomes in nonmalignant tissues.


Assuntos
Aberrações Cromossômicas , Análise Citogenética/métodos , Hibridização in Situ Fluorescente/métodos , Análise em Microsséries/métodos , Diagnóstico Pré-Natal/métodos , Anormalidades Múltiplas/genética , Aborto Habitual/genética , Amniocentese/métodos , Amostra da Vilosidade Coriônica/métodos , Feminino , Humanos , Idade Materna , Gravidez
14.
Am J Med Genet A ; 143A(20): 2357-70, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17853469

RESUMO

Microarray-based comparative genomic hybridization (aCGH) allows for simultaneous high-resolution analysis of multiple genomic loci. Recently, focused aCGH platforms have emerged allowing for analysis of numerous clinically relevant chromosome loci. The purpose of our study was to evaluate the Spectral Genomics Constitutional Chip 1.0 (CC) for use in the clinical laboratory. The CC consisted of 429 BAC clones for 41 known genetic deletion/duplication syndromes, subtelomeric regions, and chromosomal backbone clones. We conducted a blinded study of 48 samples including 46 patients (one sample was run in triplicate) with previously determined constitutional chromosome anomalies and two negative controls. Patient samples included 31 microdeletions, four duplications, three derivative chromosomes, three trisomies, and five sex chromosome aneuploidies. Our results show that the CC identified the expected gains and/or losses in 46 of 48 samples. The two negative controls were considered to be normal and the three replicates of the same patient sample were concordant. Two samples yielded false-negative results; however, repeat analysis produced acceptable results for one of them. One sample ultimately had an insufficient amount of DNA precluding aCGH analysis. While promising, the results suggest that further studies are needed to reduce protocol variability and to establish standard analysis and interpretation criteria. Further, this study verifies the importance of extensive validation studies prior to clinical implementation of new clinically available methodologies.


Assuntos
Transtornos Cromossômicos/diagnóstico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Aberrações Cromossômicas , Genoma Humano , Genômica/métodos , Humanos , Síndrome de Williams/diagnóstico , Síndrome de Williams/genética
15.
Clin Chem ; 52(10): 1864-70, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16887896

RESUMO

BACKGROUND: Glycerol kinase deficiency (GKD) is an X-linked recessive disorder that presents in both isolated and complex forms. The contiguous deletion that leads to GKD also commonly affects NR0B1 (DAX1), the gene associated with adrenal hypoplasia congenita, and DMD, the Duchenne muscular dystrophy gene. Molecular testing to delineate this deletion is expensive and has only limited availability. METHODS: We designed a multiplex PCR assay for the detection and mapping of a contiguous deletion potentially affecting the IL1RAPL1, NR0B1, GK, and DMD genes in a 29-month-old male patient with GKD. RESULTS: Multiplex PCR detected a contiguous deletion that involved the IL1RAPL1, NR0B1, GK, and DMD genes. Although the patient had a creatine kinase concentration within the reference interval, further mapping with PCR revealed that exon 74 was the last intact exon at the 3' end of the DMD gene. CONCLUSIONS: Multiplex PCR is an effective and inexpensive way to detect and map the contiguous deletion in cases of complex GKD. The extension of a deletion to include DMD exon 75 in a patient with a creatine kinase concentration within the reference interval suggests that this region of the gene may not be essential for protein function.


Assuntos
Glicerol Quinase/deficiência , Pré-Escolar , Receptor Nuclear Órfão DAX-1 , Proteínas de Ligação a DNA/genética , Distrofina/genética , Éxons , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Glicerol Quinase/genética , Humanos , Proteína Acessória do Receptor de Interleucina-1 , Masculino , Reação em Cadeia da Polimerase/métodos , Receptores de Interleucina-1/genética , Receptores do Ácido Retinoico/genética , Valores de Referência , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA