Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Appl Environ Microbiol ; 89(5): e0033523, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37078870

RESUMO

Small proteins perform a diverse array of functions, from microbial competition, to endocrine signaling, to building biomaterials. Microbial systems that can produce recombinant small proteins enable discovery of new effectors, exploration of sequence activity relationships, and have the potential for in vivo delivery. However, we lack simple systems for controlling small-protein secretion from Gram-negative bacteria. Microcins are small-protein antibiotics secreted by Gram-negative bacteria that inhibit the growth of neighboring microbes. They are exported from the cytosol to the environment in a one-step process through a specific class of type I secretion systems (T1SSs). However, relatively little is known about substrate requirements for small proteins exported through microcin T1SSs. Here, we investigate the prototypic microcin V T1SS from Escherichia coli and show that it can export a remarkably wide range of natural and synthetic small proteins. We demonstrate that secretion is largely independent of the cargo protein's chemical properties and appears to be constrained only by protein length. We show that a varied range of bioactive sequences, including an antibacterial protein, a microbial signaling factor, a protease inhibitor, and a human hormone, can all be secreted and elicit their intended biological effect. Secretion through this system is not limited to E. coli, and we demonstrate its function in additional Gram-negative species that can inhabit the gastrointestinal tract. Our findings uncover the highly promiscuous nature of small-protein export through the microcin V T1SS, which has implications for native-cargo capacity and the use of this system in Gram-negative bacteria for small-protein research and delivery. IMPORTANCE Type I secretion systems for microcin export in Gram-negative bacteria transport small antibacterial proteins from the cytoplasm to the extracellular environment in a single step. In nature, each secretion system is generally paired with a specific small protein. We know little about the export capacity of these transporters and how cargo sequence influences secretion. Here, we investigate the microcin V type I system. Remarkably, our studies show that this system can export small proteins of diverse sequence composition and is only limited by protein length. Furthermore, we demonstrate that a wide range of bioactive small proteins can be secreted and that this system can be used in Gram-negative species that colonize the gastrointestinal tract. These findings expand our understanding of secretion through type I systems and their potential uses in a variety of small-protein applications.


Assuntos
Escherichia coli , Sistemas de Secreção Tipo I , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Bactérias Gram-Negativas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Biochem J ; 479(24): 2465-2475, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36416757

RESUMO

The Epidermal Growth Factor Receptor (EGFR) is a Receptor Tyrosine Kinase that mediates cell proliferation and differentiation events during development and maintenance of complex organisms. Formation of specific, ligand-dependent EGFR dimers is a key step in stimulating EGFR signaling, and crystal structures of active, dimeric forms of isolated EGFR extracellular regions and kinase domains have revealed much about how dimer interactions regulate EGFR activity. The nature and role of the transmembrane region in regulating EGFR activity remains less clear, however. Proposed roles for the transmembrane region range from nonspecific but energetically favorable interactions to specific transmembrane dimer conformations being associated with active, inactive, or activity-modulated states of EGFR. To investigate the role of specific transmembrane dimers in modulating EGFR activity we generated thirteen EGFR variants with altered transmembrane sequences designed to favor or disfavor specific types of transmembrane region interactions. We show using FRET microscopy that EGFR transmembrane regions have an intrinsic propensity to associate in mammalian cell membranes that is counteracted by the extracellular region. We show using cell-based assays that each of the EGFR transmembrane variants except the Neu variant, which results in constitutive receptor phosphorylation, is able to autophosphorylate and stimulate phosphorylation of downstream effectors Erk and Akt. Our results indicate that many transmembrane sequences, including polyleucine, are compatible with EGFR activity and provide no evidence for specific transmembrane dimers regulating EGFR function.


Assuntos
Receptores ErbB , Transdução de Sinais , Animais , Fosforilação , Receptores ErbB/metabolismo , Transdução de Sinais/fisiologia , Membrana Celular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Mamíferos/metabolismo
3.
Biochem J ; 477(21): 4207-4220, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33043983

RESUMO

Receptor Tyrosine Kinases (RTKs) comprise a diverse group of cell-surface receptors that mediate key signaling events during animal development and are frequently activated in cancer. We show here that deletion of the extracellular regions of 10 RTKs representing 7 RTK classes or their substitution with the dimeric immunoglobulin Fc region results in constitutive receptor phosphorylation but fails to result in phosphorylation of downstream signaling effectors Erk or Akt. Conversely, substitution of RTK extracellular regions with the extracellular region of the Epidermal Growth Factor Receptor (EGFR) results in increases in effector phosphorylation in response to EGF. These results indicate that the activation signal generated by the EGFR extracellular region is capable of activating at least seven different RTK classes. Failure of phosphorylated Fc-RTK chimeras or RTKs with deleted extracellular regions to stimulate phosphorylation of downstream effectors indicates that either dimerization and receptor phosphorylation per se are insufficient to activate signaling or constitutive dimerization leads to pathway inhibition.


Assuntos
Receptores ErbB/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Receptores ErbB/genética , Humanos , Fosforilação/genética , Fosforilação/fisiologia , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
4.
J Virol ; 86(20): 11013-23, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22787230

RESUMO

Foot-and-mouth disease virus (FMDV) nonstructural protein 3A plays important roles in virus replication, virulence, and host range. In other picornaviruses, homodimerization of 3A has been shown to be relevant for its biological activity. In this work, FMDV 3A homodimerization was evidenced by an in situ protein fluorescent ligation assay. A molecular model of the FMDV 3A protein, derived from the nuclear magnetic resonance (NMR) structure of the poliovirus 3A protein, predicted a hydrophobic interface spanning residues 25 to 44 as the main determinant for 3A dimerization. Replacements L38E and L41E, involving charge acquisition at residues predicted to contribute to the hydrophobic interface, reduced the dimerization signal in the protein ligation assay and prevented the detection of dimer/multimer species in both transiently expressed 3A proteins and in synthetic peptides reproducing the N terminus of 3A. These replacements also led to production of infective viruses that replaced the acidic residues introduced (E) by nonpolar amino acids, indicating that preservation of the hydrophobic interface is essential for virus replication. Replacements that favored (Q44R) or impaired (Q44D) the polar interactions predicted between residues Q44 and D32 did not abolish dimer formation of transiently expressed 3A, indicating that these interactions are not critical for 3A dimerization. Nevertheless, while Q44R led to recovery of viruses that maintained the mutation, Q44D resulted in selection of infective viruses with substitution D44E with acidic charge but with structural features similar to those of the parental virus, suggesting that Q44 is involved in functions other than 3A dimerization.


Assuntos
Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/patogenicidade , Febre Aftosa/virologia , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Febre Aftosa/patologia , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Multimerização Proteica , Suínos , Células Vero , Proteínas do Core Viral/química , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
5.
bioRxiv ; 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36747863

RESUMO

Microcins are peptide antibiotics secreted by Gram-negative bacteria that inhibit the growth of neighboring microbes. They are exported from the cytosol to the environment in a one-step process through a specific type I secretion system (T1SS). While the rules governing export of natural or non-native substrates have been resolved for T1SSs that secrete large proteins, relatively little is known about substrate requirements for peptides exported through T1SSs that secrete microcins. Here, we investigate the prototypic microcin V T1SS from Escherichia coli and show it can export a remarkably wide range of natural and synthetic peptides. We demonstrate that secretion through this system is not affected by peptide charge or hydrophobicity and appears only constrained by peptide length. A varied range of bioactive peptides, including an antibacterial peptide, a microbial signaling factor, a protease inhibitor, and a human hormone, can all be secreted and elicit their intended biological effect. Secretion through this system is not limited to E. coli , and we demonstrate its function in additional Gram-negative species that can inhabit the gastrointestinal tract. Our findings uncover the highly promiscuous nature of peptide export thorough the microcin V T1SS, which has implications for native cargo capacity and use of Gram-negative bacteria for peptide research and delivery. Importance: Microcin type I secretion systems in Gram-negative bacteria transport antibacterial peptides from the cytoplasm to the extracellular environment in single step. In nature, each microcin secretion system is generally paired with a specific peptide. We know little about the export capacity of these transporters and how peptide sequence influences secretion. Here, we investigate the microcin V type I secretion system. Remarkably, our studies show this system can export diverse peptides and is only limited by peptide length. Furthermore, we demonstrate that various bioactive peptides can be secreted, and this system can be used in Gram-negative species that colonize the gastrointestinal tract. These finding expand our understanding of secretion through type I systems and their potential uses in peptide applications.

6.
J Virol ; 83(9): 4216-26, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19225001

RESUMO

We performed a comparative analysis of the internalization mechanisms used by three viruses causing important vesicular diseases in animals. Swine vesicular disease virus (SVDV) internalization was inhibited by treatments that affected clathrin-mediated endocytosis and required traffic through an endosomal compartment. SVDV particles were found in clathrin-coated pits by electron microscopy and colocalized with markers of early endosomes by confocal microscopy. SVDV infectivity was significantly inhibited by drugs that raised endosomal pH. When compared to foot-and-mouth disease virus (FMDV), which uses clathrin-mediated endocytosis, the early step of SVDV was dependent on the integrity of microtubules. SVDV-productive endocytosis was more sensitive to plasma membrane cholesterol extraction than that of FMDV, and differential cell signaling requirements for virus infection were also found. Vesicular stomatitis virus, a model virus internalized by clathrin-mediated endocytosis, was included as a control of drug treatments. These results suggest that different clathrin-mediated routes are responsible for the internalization of these viruses.


Assuntos
Enterovirus Humano B/metabolismo , Vírus da Febre Aftosa/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Colesterol/metabolismo , Clatrina/metabolismo , Cricetinae , Citoesqueleto/metabolismo , Endocitose , Enterovirus Humano B/ultraestrutura , Vírus da Febre Aftosa/ultraestrutura , Microscopia Eletrônica de Transmissão , Transdução de Sinais , Vesiculovirus/metabolismo
7.
Front Microbiol ; 7: 612, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199941

RESUMO

Swine vesicular disease virus (SVDV) is a porcine pathogen and a member of the species Enterovirus B within the Picornaviridae family. Brefeldin A (BFA) is an inhibitor of guanine nucleotide exchange factors of Arf proteins that induces Golgi complex disassembly and alters the cellular secretory pathway. Since BFA has been shown to inhibit the RNA replication of different enteroviruses, including SVDV, we have analyzed the effect of BFA and of golgicide A (GCA), another Golgi disrupting drug, on SVDV multiplication. BFA and GCA similarly inhibited SVDV production. To investigate the molecular basis of the antiviral effect of BFA, SVDV mutants with increased resistance to BFA were isolated. A single amino acid substitution, Q65H, in the non-structural protein 2C was found to be responsible for increased resistance to BFA. These results provide new insight into the relationship of enteroviruses with the components of the secretory pathway and on the role of SVDV 2C protein in this process.

8.
PLoS One ; 10(10): e0141415, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26505190

RESUMO

Nonstructural protein 3A is involved in relevant functions in foot-and-mouth disease virus (FMDV) replication. FMDV 3A can form homodimers and preservation of the two hydrophobic α-helices (α1 and α2) that stabilize the dimer interface is essential for virus replication. In this work, small peptides mimicking residues involved in the dimer interface were used to interfere with dimerization and thus gain insight on its biological function. The dimer interface peptides α1, α2 and that spanning the two hydrophobic α-helices, α12, impaired in vitro dimer formation of a peptide containing the two α-helices, this effect being higher with peptide α12. To assess the effect of dimer inhibition in cultured cells, the interfering peptides were N-terminally fused to a heptaarginine (R7) sequence to favor their intracellular translocation. Thus, when fused to R7, interference peptides (100 µM) were able to inhibit dimerization of transiently expressed 3A, the higher inhibitions being found with peptides α1 and α12. The 3A dimerization impairment exerted by the peptides correlated with significant, specific reductions in the viral yield recovered from peptide-treated FMDV infected cells. In this case, α2 was the only peptide producing significant reductions at concentrations lower than 100 µM. Thus, dimer interface peptides constitute a tool to understand the structure-function relationship of this viral protein and point to 3A dimerization as a potential antiviral target.


Assuntos
Vírus da Febre Aftosa/genética , Febre Aftosa/virologia , Proteínas não Estruturais Virais/química , Replicação Viral/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Febre Aftosa/genética , Vírus da Febre Aftosa/química , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas não Estruturais Virais/genética
9.
PLoS One ; 9(9): e106685, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25275544

RESUMO

Foot-and-mouth disease virus non-structural protein 3A plays important roles in virus replication, virulence and host-range; nevertheless little is known on the interactions that this protein can establish with different cell components. In this work, we have performed in vivo dynamic studies from cells transiently expressing the green fluorescent protein (GFP) fused to the complete 3A (GFP3A) and versions including different 3A mutations. The results revealed the presence of a mobile fraction of GFP3A, which was found increased in most of the mutants analyzed, and the location of 3A in a continuous compartment in the cytoplasm. A dual behavior was also observed for GFP3A upon cell fractionation, being the protein equally recovered from the cytosolic and membrane fractions, a ratio that was also observed when the insoluble fraction was further fractioned, even in the presence of detergent. Similar results were observed in the fractionation of GFP3ABBB, a 3A protein precursor required for initiating RNA replication. A nonintegral membrane protein topology of FMDV 3A was supported by the lack of glycosylation of versions of 3A in which each of the protein termini was fused to a glycosylation acceptor tag, as well as by their accessibility to degradation by proteases. According to this model 3A would interact with membranes through its central hydrophobic region exposing its N- and C- termini to the cytosol, where interactions between viral and cellular proteins required for virus replication are expected to occur.


Assuntos
Membrana Celular/metabolismo , Vírus da Febre Aftosa/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Transfecção
10.
Vaccine ; 29(52): 9655-62, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22027488

RESUMO

Conventional foot-and-mouth disease (FMD) vaccines are produced from virus grown in cell culture that is chemically inactivated by using binary ethylenimide (BEI). Here, we show that BEI treatment preserves both the architecture of FMDV particles, as inactivated viral particles showed by electron microscopy characteristics similar to those of infectious virions, as well as the general features of infectious virus internalization. Binding of inactivated particles to BHK-21 cells was blocked by preincubation with either a FMDV-specific monoclonal antibody or a synthetic peptide spanning the integrin-binding viral motif Arg-Gly-Asp (RGD). In addition, these particles were internalized into cultured cells through endocytosis, being directed to early endosomes, as indicated by their colocalization with the marker protein Rab5. When purified BEI-inactivated virions were labelled and their interaction with live cultured cells analyzed by time-lapse fluorescence microscopy, a major subpopulation of virus particles, about 80%, was shown to undergo internalization into a static endosome population, insensitive to the microtubule depolymerization exerted by nocodazole, while the remaining subpopulation (about 20%) was dynamic and sensitive to this drug. Thus, BEI-inactivated particles provide an interesting tool to study early steps in FMDV-cell interactions enabling a distinction between FMDV internalization and productive infection. Possible implications for FMDV immune response elicited following vaccine administration are discussed.


Assuntos
Aziridinas/farmacologia , Desinfetantes/farmacologia , Vírus da Febre Aftosa/efeitos dos fármacos , Vírus da Febre Aftosa/fisiologia , Internalização do Vírus , Animais , Células Cultivadas , Cricetinae , Endocitose , Endossomos/virologia , Vírus da Febre Aftosa/ultraestrutura , Microscopia Eletrônica , Microscopia de Fluorescência , Imagem com Lapso de Tempo , Vírion/efeitos dos fármacos , Vírion/ultraestrutura
11.
Virology ; 374(2): 432-43, 2008 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-18279902

RESUMO

The intracellular distribution of swine vesicular disease virus (SVDV) proteins and the induced reorganization of endomembranes in IBRS-2 cells were analyzed. Fluorescence to new SVDV capsids appeared first upon infection, concentrated in perinuclear circular structures and colocalized to dsRNA. As in foot-and-mouth disease virus (FMDV)-infected cells, a vesicular pattern was predominantly found in later stages of SVDV capsid morphogenesis that colocalized with those of non-structural proteins 2C, 2BC and 3A. These results suggest that assembly of capsid proteins is associated to the replication complex. Confocal microscopy showed a decreased fluorescence to ER markers (calreticulin and protein disulfide isomerase), and disorganization of cis-Golgi gp74 and trans-Golgi caveolin-1 markers in SVDV- and FMDV-, but not in vesicular stomatitis virus (VSV)-infected cells. Electron microscopy of SVDV-infected cells at an early stage of infection revealed fragmented ER cisternae with expanded lumen and accumulation of large Golgi vesicles, suggesting alterations of vesicle traffic through Golgi compartments. At this early stage, FMDV induced different patterns of ER fragmentation and Golgi alterations. At later stages of SVDV cytopathology, cells showed a completely vacuolated cytoplasm containing vesicles of different sizes. Cell treatment with brefeldin A, which disrupts the Golgi complex, reduced SVDV (approximately 5 log) and VSV (approximately 4 log) titers, but did not affect FMDV growth. Thus, three viruses, which share target tissues and clinical signs in natural hosts, induce different intracellular effects in cultured cells.


Assuntos
Enterovirus Humano B/patogenicidade , Vírus da Febre Aftosa/patogenicidade , Interações Hospedeiro-Patógeno , Rim/virologia , Frações Subcelulares/metabolismo , Vírus da Estomatite Vesicular Indiana/patogenicidade , Proteínas Virais/metabolismo , Animais , Brefeldina A/farmacologia , Linhagem Celular , Cricetinae , Enterovirus Humano B/metabolismo , Vírus da Febre Aftosa/metabolismo , Rim/citologia , Rim/ultraestrutura , Mesocricetus , Microscopia Confocal , Microscopia de Fluorescência , Vírus da Estomatite Vesicular Indiana/metabolismo , Proteínas Virais/genética
12.
Virology ; 369(1): 105-18, 2007 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-17714753

RESUMO

We have characterized the entry leading to productive infection of a type C FMDV in two cell lines widely used for virus growth, BHK-21 and IBRS-2. Inhibition of clathrin-mediated endocytosis by sucrose treatment decreased both cell entry and virus multiplication. Evidence of a direct requirement of clathrin for productive viral entry was obtained using BHK21-tTA/anti-CHC cells, which showed a significant reduction of viral entry and infection when the synthesis and functionality of clathrin heavy chain was inhibited (Tet- cells). This was also observed for vesicular stomatitis virus (VSV) productive entry. The effect of NH(4)Cl and concanamycin A on FMDV entry and infection was consistent with the requirement of acidic compartments for decapsidation and virus replication. As expected from its higher stability at acidic pH, this requirement was higher for VSV. Since BHK-21 and IBRS-2 cells expressed caveolin-1, we explored the effect on productive virus entry of drugs that interfere with caveolae-mediated endocytosis. Treatment with nystatin did not reduce entry and infection of FMDV or VSV, while cholesterol depletion with MbetaCD significantly inhibited both steps of the FMDV cycle, indicating that plasma membrane cholesterol is required for virus productive entry.


Assuntos
Vesículas Revestidas por Clatrina/virologia , Clatrina/fisiologia , Endocitose , Vírus da Febre Aftosa/fisiologia , Lipídeos de Membrana/fisiologia , Internalização do Vírus , Cloreto de Amônio/farmacologia , Animais , Antivirais/farmacologia , Cavéolas/virologia , Linhagem Celular , Clatrina/antagonistas & inibidores , Cricetinae , Vírus da Febre Aftosa/crescimento & desenvolvimento , Macrolídeos/farmacologia , Nistatina/farmacologia , Suínos , Vesiculovirus/crescimento & desenvolvimento , Vesiculovirus/fisiologia , Internalização do Vírus/efeitos dos fármacos
13.
Virology ; 349(2): 409-21, 2006 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-16624365

RESUMO

Differences in the kinetics of expression and cell distribution among FMDV non-structural proteins (NSPs) have been observed in BHK-21-infected cells. 3D(pol) was the first protein detected by immunofluorescence (1.5 h p.i.), showing a perinuclear distribution. At 2-2.5 h p.i., 2B, 2C, 3B and 3C were detected, mostly exhibiting a punctuated, scattered pattern, while 3A and 3D(pol) appeared concentrated at one side of the nucleus. This distribution was exhibited by all the NSPs from 3 h p.i., being 2C and, to a lesser extent, precursors 2BC and 3ABBB, the only proteins detected by Western blotting at that infection time. From 4 h p.i., all mature NSPs as well as precursors 2BC, 3ABBB, 3ABB, 3AB and 3CD(pol) were detected by this technique. In spite of their similar immunofluorescence patterns, 2C and 3A co-localized partially by confocal microscopy at 3.5 h p.i., and 3A, but not 2C, co-localized with the ER marker calreticulin, suggesting differences in the distribution of these proteins and/or their precursors as infection proceeded. Transient expression of 2C and 3AB resulted in punctuated fluorescence patterns similar to those found in early infected cells, while 3A showed a more diffuse distribution. A shift towards a fibrous pattern was noticed for 3ABB, while a major change was observed in cells expressing 3ABBB, which displayed a perinuclear fibrous distribution. Interestingly, when co-expressed with 3D(pol), the pattern observed for 3ABBB fluorescence was altered, resembling that exhibited by cells transfected with 3AB. Transient expression of 3D(pol) showed a homogeneous cell distribution that included, as determined by confocal microscopy, the nucleus. This was confirmed by the detection of 3D(pol) in nuclear fractions of transfected cells. 3D(pol) and its precursor 3CD(pol) were also detected in nuclear fractions of infected cells, suggesting that these proteins can directly interact with the nucleus during FMDV infection.


Assuntos
Núcleo Celular/metabolismo , Vírus da Febre Aftosa/fisiologia , Proteínas não Estruturais Virais/metabolismo , Animais , Western Blotting , Linhagem Celular , Cricetinae , Efeito Citopatogênico Viral , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Frações Subcelulares/metabolismo , Fatores de Tempo , Transfecção , Proteínas não Estruturais Virais/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA