Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 9(1): e10611, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193117

RESUMO

Excessive immune activation and immunosuppression are opposing factors that contribute to the dysregulated innate and adaptive immune responses seen in severe inflammation and sepsis. Here, a novel analog of the histone deacetylase inhibitor (HDACi), suberoylanilide hydroxamic acid (SAHA-OH), was incorporated into immunomodulatory poly(lactic acid)-based nanoparticles (iNP-SAHA) by employing a prodrug approach through the covalent modification of poly(lactic-co-glycolic acid) (PLGA) with SAHA-OH. iNP-SAHA formulation allowed for controlled incorporation and delivery of SAHA-OH from iNP-SAHA and treatment led to multimodal biological responses including significant reductions in proinflammatory cytokine secretions and gene expression, while increasing the survival of primary macrophages under lipopolysaccharide (LPS) challenge. Using a lethal LPS-induced endotoxemia mouse model of sepsis, iNP-SAHA administration improved the survival of mice in a dose-dependent manner and tended to improve survival at the lowest doses compared to iNP control. Further, iNP-SAHA reduced the levels of plasma proinflammatory cytokines and chemokines associated with sepsis more significantly than iNP and similarly improved inflammation-induced spleen and liver toxicity as iNP, supporting its potential polypharmacological activity. Collectively, iNP-SAHA offers a potential drug delivery approach to modulate the multifaceted inflammatory responses observed in diseases such as sepsis.

2.
RSC Med Chem ; 14(1): 103-112, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36760746

RESUMO

The anti-apoptotic protein MCL-1, which is overexpressed in multiple cancers, is presently a focus for the development of targeted drugs in oncology. We previously discovered inhibitors of MCL-1 based on 1-sulfonylated 1,2,3,4-tetrahydroquinoline-6-carboxylic acids ("1,6-THQs"). However, with the nitrogen atom constrained in the bicyclic ring, we were unable to modify the alkyl portion of the tertiary sulfonamide functionality. Moreover, the introduction of additional functional groups onto the benzene ring portion of the THQ bicycle would not be trivial. Therefore, we elected to deconstruct the piperidine-type ring of the 6-carboxy-THQ lead to create a new 4-aminobenzoic acid scaffold. Given its simplicity, this permitted us to introduce diversity at the sulfonamide nitrogen, as well as vary the positions and substituents of the benzene ring. One of our most potent MCL-1 inhibitors, 6e-OH, exhibited a K i of 0.778 µM. Heteronuclear single quantum coherence experiments suggested 6e-OH bound in the canonical BH3-binding groove, with significant perturbations of R263, which forms a salt bridge with MCL-1's pro-apoptotic binding partners, as well as residues in the p2 pocket. Selectivity studies indicated that our compounds are dual inhibitors of MCL-1 and BCL-xL, with 17cd the most potent dual inhibitor: K i = 0.629 µM (MCL-1), 1.67 µM (BCL-xL). Whilst selective inhibitors may be more desirable in certain instances, polypharmacological agents whose additional target(s) address other pathways associated with the disease state, or serve to counter resistance mechanisms to the primary target, may prove particularly effective therapeutics. Since selective MCL-1 inhibition may be thwarted by overexpression of sister anti-apoptotic proteins, including BCL-xL and BCL-2, we believe our work lays a solid foundation towards the development of multi-targeting anti-cancer drugs.

3.
RSC Med Chem ; 13(8): 921-928, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36092144

RESUMO

Protein-protein interactions (PPIs) are large, often featureless domains whose modulations by small-molecules are challenging. Whilst there are some notable successes, such as the BCL-2 inhibitor venetoclax, the requirement for larger ligands to achieve the desired level of potency and selectivity may result in poor "drug-like" properties. Covalent chemistry is presently enjoying a renaissance. In particular, targeted covalent inhibition (TCI), in which a weakly electrophilic "warhead" is installed onto a protein ligand scaffold, is a powerful strategy to develop potent inhibitors of PPIs that are smaller/more drug-like yet have enhanced affinities by virtue of the reinforcing effect on the existing non-covalent interactions by the resulting protein-ligand covalent bond. Furthermore, the covalent bond delivers sustained inhibition, which may translate into significantly reduced therapeutic dosing. Herein, we discuss recent applications of a spectrum of TCIs, as well as covalent screening strategies, in the discovery of more effective inhibitors of PPIs using the HDM2 and BCL-2 protein families as case studies.

4.
ACS Pharmacol Transl Sci ; 5(11): 1128-1141, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36407956

RESUMO

Histone deacetylase inhibitors (HDACi) induce potent anti-inflammatory responses when used to treat inflammatory diseases. Suberoylanilide hydroxamic acid (SAHA), a pan-HDACi, decreases pro-inflammatory cytokine levels and attenuates cytokine storm in sepsis; however, its toxicity profile toward immune cells has limited its use as a sepsis therapeutic. Here, we developed a modification to SAHA by para-hydroxymethylating the capping group to generate SAHA-OH. We discovered that SAHA-OH provides a favorable improvement to the toxicity profile compared to SAHA. SAHA-OH significantly reduced primary macrophage apoptosis and splenic B cell death as well as mitigated organ damage using a lipopolysaccharide (LPS)-induced endotoxemia mouse model. Furthermore, SAHA-OH retained anti-inflammatory responses similar to SAHA as measured by reductions in LPS-induced proinflammatory cytokine secretions in vitro and in vivo. These effects were attributed to a decreased selectivity of HDAC1, 2, 3, 8 and an increased selectivity for HDAC6 for SAHA-OH as determined by IC50 values. Our results support the potential for SAHA-OH to modulate acute proinflammatory responses while mitigating SAHA-associated drug toxicity for use in the treatment of inflammation-associated diseases and conditions.

5.
RSC Med Chem ; 13(8): 963-969, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36092148

RESUMO

Overexpression of the anti-apoptotic BCL-2 proteins is associated with the development and progression of a range of cancers. Venetoclax, an FDA-approved BCL-2 inhibitor, is fast becoming the standard-of-care for acute myeloid leukemia and chronic lymphocytic leukemia. However, the median survival offered by venetoclax is only 18 months (as part of a combination therapy regimen), and one of the primary culprits for this is the concomitant upregulation of sister anti-apoptotic proteins, in particular MCL-1 (and BCL-xL), which provides an escape route that manifests as venetoclax resistance. Since inhibition of BCL-xL leads to thrombocytopenia, we believe that a dual MCL-1/BCL-2 inhibitor may provide an enhanced therapeutic effect relative to a selective BCL-2 inhibitor. Beginning with a carboxylic acid-containing literature compound that is a potent inhibitor of MCL-1 and a moderate inhibitor of BCL-2, we herein describe our efforts to develop dual inhibitors of MCL-1 and BCL-2 by scaffold hopping from an indole core to an indazole framework. Subsequently, further elaboration of our novel N2-substituted, indazole-3-carboxylic acid lead into a family of indazole-3-acylsulfonamides resulted in improved inhibition of both MCL-1 and BCL-2, possibly through occupation of the p4 pocket, with minimal or no inhibition of BCL-xL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA