Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Methods ; 8(1): 67-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21151135

RESUMO

Engineered zinc-finger nucleases (ZFNs) enable targeted genome modification. Here we describe context-dependent assembly (CoDA), a platform for engineering ZFNs using only standard cloning techniques or custom DNA synthesis. Using CoDA-generated ZFNs, we rapidly altered 20 genes in Danio rerio, Arabidopsis thaliana and Glycine max. The simplicity and efficacy of CoDA will enable broad adoption of ZFN technology and make possible large-scale projects focused on multigene pathways or genome-wide alterations.


Assuntos
Endonucleases/genética , Endonucleases/metabolismo , Engenharia de Proteínas , Dedos de Zinco/fisiologia , Animais , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma , Glycine max/genética , Peixe-Zebra/genética , Dedos de Zinco/genética
2.
Nucleic Acids Res ; 40(12): 5560-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22373919

RESUMO

Engineered zinc finger nucleases (ZFNs) induce DNA double-strand breaks at specific recognition sequences and can promote efficient introduction of desired insertions, deletions or substitutions at or near the cut site via homology-directed repair (HDR) with a double- and/or single-stranded donor DNA template. However, mutagenic events caused by error-prone non-homologous end-joining (NHEJ)-mediated repair are introduced with equal or higher frequency at the nuclease cleavage site. Furthermore, unintended mutations can also result from NHEJ-mediated repair of off-target nuclease cleavage sites. Here, we describe a simple and general method for converting engineered ZFNs into zinc finger nickases (ZFNickases) by inactivating the catalytic activity of one monomer in a ZFN dimer. ZFNickases show robust strand-specific nicking activity in vitro. In addition, we demonstrate that ZFNickases can stimulate HDR at their nicking site in human cells, albeit at a lower frequency than by the ZFNs from which they were derived. Finally, we find that ZFNickases appear to induce greatly reduced levels of mutagenic NHEJ at their target nicking site. ZFNickases thus provide a promising means for inducing HDR-mediated gene modifications while reducing unwanted mutagenesis caused by error-prone NHEJ.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Reparo de DNA por Recombinação , Linhagem Celular , Clivagem do DNA , Reparo do DNA por Junção de Extremidades , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Mutagênese , Engenharia de Proteínas/métodos , Dedos de Zinco
3.
Plant Physiol ; 156(2): 466-73, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21464476

RESUMO

We performed targeted mutagenesis of a transgene and nine endogenous soybean (Glycine max) genes using zinc-finger nucleases (ZFNs). A suite of ZFNs were engineered by the recently described context-dependent assembly platform--a rapid, open-source method for generating zinc-finger arrays. Specific ZFNs targeting dicer-like (DCL) genes and other genes involved in RNA silencing were cloned into a vector under an estrogen-inducible promoter. A hairy-root transformation system was employed to investigate the efficiency of ZFN mutagenesis at each target locus. Transgenic roots exhibited somatic mutations localized at the ZFN target sites for seven out of nine targeted genes. We next introduced a ZFN into soybean via whole-plant transformation and generated independent mutations in the paralogous genes DCL4a and DCL4b. The dcl4b mutation showed efficient heritable transmission of the ZFN-induced mutation in the subsequent generation. These findings indicate that ZFN-based mutagenesis provides an efficient method for making mutations in duplicate genes that are otherwise difficult to study due to redundancy. We also developed a publicly accessible Web-based tool to identify sites suitable for engineering context-dependent assembly ZFNs in the soybean genome.


Assuntos
Endonucleases/química , Endonucleases/metabolismo , Genes Duplicados/genética , Genes de Plantas/genética , Técnicas Genéticas , Glycine max/genética , Mutagênese/genética , Dedos de Zinco/genética , Sequência de Bases , Proteínas de Fluorescência Verde/metabolismo , Padrões de Herança/genética , Internet , Dados de Sequência Molecular , Mutação/genética , Raízes de Plantas/genética , Reação em Cadeia da Polimerase , Transgenes/genética
4.
Stem Cells ; 29(11): 1717-26, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21898685

RESUMO

The combination of induced pluripotent stem cell (iPSC) technology and targeted gene modification by homologous recombination (HR) represents a promising new approach to generate genetically corrected, patient-derived cells that could be used for autologous transplantation therapies. This strategy has several potential advantages over conventional gene therapy including eliminating the need for immunosuppression, avoiding the risk of insertional mutagenesis by therapeutic vectors, and maintaining expression of the corrected gene by endogenous control elements rather than a constitutive promoter. However, gene targeting in human pluripotent cells has remained challenging and inefficient. Recently, engineered zinc finger nucleases (ZFNs) have been shown to substantially increase HR frequencies in human iPSCs, raising the prospect of using this technology to correct disease causing mutations. Here, we describe the generation of iPSC lines from sickle cell anemia patients and in situ correction of the disease causing mutation using three ZFN pairs made by the publicly available oligomerized pool engineering method (OPEN). Gene-corrected cells retained full pluripotency and a normal karyotype following removal of reprogramming factor and drug-resistance genes. By testing various conditions, we also demonstrated that HR events in human iPSCs can occur as far as 82 bps from a ZFN-induced break. Our approach delineates a roadmap for using ZFNs made by an open-source method to achieve efficient, transgene-free correction of monogenic disease mutations in patient-derived iPSCs. Our results provide an important proof of principle that ZFNs can be used to produce gene-corrected human iPSCs that could be used for therapeutic applications.


Assuntos
Anemia Falciforme/terapia , Endonucleases/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Anemia Falciforme/genética , Células Cultivadas , Endonucleases/genética , Marcação de Genes/métodos , Terapia Genética/métodos , Humanos , Cariotipagem , Dedos de Zinco/genética , Dedos de Zinco/fisiologia , Globinas beta/genética , Globinas beta/metabolismo
5.
BMC Bioinformatics ; 11: 543, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21044337

RESUMO

BACKGROUND: Precise and efficient methods for gene targeting are critical for detailed functional analysis of genomes and regulatory networks and for potentially improving the efficacy and safety of gene therapies. Oligomerized Pool ENgineering (OPEN) is a recently developed method for engineering C2H2 zinc finger proteins (ZFPs) designed to bind specific DNA sequences with high affinity and specificity in vivo. Because generation of ZFPs using OPEN requires considerable effort, a computational method for identifying the sites in any given gene that are most likely to be successfully targeted by this method is desirable. RESULTS: Analysis of the base composition of experimentally validated ZFP target sites identified important constraints on the DNA sequence space that can be effectively targeted using OPEN. Using alternate encodings to represent ZFP target sites, we implemented Naïve Bayes and Support Vector Machine classifiers capable of distinguishing "active" targets, i.e., ZFP binding sites that can be targeted with a high rate of success, from those that are "inactive" or poor targets for ZFPs generated using current OPEN technologies. When evaluated using leave-one-out cross-validation on a dataset of 135 experimentally validated ZFP target sites, the best Naïve Bayes classifier, designated ZiFOpT, achieved overall accuracy of 87% and specificity+ of 90%, with an ROC AUC of 0.89. When challenged with a completely independent test set of 140 newly validated ZFP target sites, ZiFOpT performance was comparable in terms of overall accuracy (88%) and specificity+ (92%), but with reduced ROC AUC (0.77). Users can rank potentially active ZFP target sites using a confidence score derived from the posterior probability returned by ZiFOpT. CONCLUSION: ZiFOpT, a machine learning classifier trained to identify DNA sequences amenable for targeting by OPEN-generated zinc finger arrays, can guide users to target sites that are most likely to function successfully in vivo, substantially reducing the experimental effort required. ZiFOpT is freely available and incorporated in the Zinc Finger Targeter web server (http://bindr.gdcb.iastate.edu/ZiFiT).


Assuntos
Proteínas de Ligação a DNA/química , Engenharia de Proteínas/métodos , Dedos de Zinco , Inteligência Artificial , Sequência de Bases , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Marcação de Genes , Análise de Sequência de DNA/métodos
6.
Nat Biotechnol ; 32(6): 569-76, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24770325

RESUMO

Monomeric CRISPR-Cas9 nucleases are widely used for targeted genome editing but can induce unwanted off-target mutations with high frequencies. Here we describe dimeric RNA-guided FokI nucleases (RFNs) that can recognize extended sequences and edit endogenous genes with high efficiencies in human cells. RFN cleavage activity depends strictly on the binding of two guide RNAs (gRNAs) to DNA with a defined spacing and orientation substantially reducing the likelihood that a suitable target site will occur more than once in the genome and therefore improving specificities relative to wild-type Cas9 monomers. RFNs guided by a single gRNA generally induce lower levels of unwanted mutations than matched monomeric Cas9 nickases. In addition, we describe a simple method for expressing multiple gRNAs bearing any 5' end nucleotide, which gives dimeric RFNs a broad targeting range. RFNs combine the ease of RNA-based targeting with the specificity enhancement inherent to dimerization and are likely to be useful in applications that require highly precise genome editing.


Assuntos
Proteínas de Bactérias/química , Sistemas CRISPR-Cas , Desoxirribonucleases de Sítio Específico do Tipo II/química , Endonucleases/química , Edição de Genes/métodos , Proteínas Recombinantes de Fusão/química , Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Endonucleases/genética , Humanos , Multimerização Proteica , Proteínas Recombinantes de Fusão/genética , Pequeno RNA não Traduzido
7.
Cell Stem Cell ; 14(6): 781-95, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24704492

RESUMO

Although many distinct mutations in a variety of genes are known to cause Amyotrophic Lateral Sclerosis (ALS), it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Here, we have combined reprogramming and stem cell differentiation approaches with genome engineering and RNA sequencing to define the transcriptional and functional changes that are induced in human motor neurons by mutant SOD1. Mutant SOD1 protein induced a transcriptional signature indicative of increased oxidative stress, reduced mitochondrial function, altered subcellular transport, and activation of the ER stress and unfolded protein response pathways. Functional studies demonstrated that these pathways were perturbed in a manner dependent on the SOD1 mutation. Finally, interrogation of stem-cell-derived motor neurons produced from ALS patients harboring a repeat expansion in C9orf72 indicates that at least a subset of these changes are more broadly conserved in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/metabolismo , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Humanos , Neurônios Motores/patologia , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA