RESUMO
MOTIVATION: The data that put the 'evidence' into 'evidence-based medicine' are central to developments in public health, primary and hospital care. A fundamental challenge is to site such data in repositories that can easily be accessed under appropriate technical and governance controls which are effectively audited and are viewed as trustworthy by diverse stakeholders. This demands socio-technical solutions that may easily become enmeshed in protracted debate and controversy as they encounter the norms, values, expectations and concerns of diverse stakeholders. In this context, the development of what are called 'Data Safe Havens' has been crucial. Unfortunately, the origins and evolution of the term have led to a range of different definitions being assumed by different groups. There is, however, an intuitively meaningful interpretation that is often assumed by those who have not previously encountered the term: a repository in which useful but potentially sensitive data may be kept securely under governance and informatics systems that are fit-for-purpose and appropriately tailored to the nature of the data being maintained, and may be accessed and utilized by legitimate users undertaking work and research contributing to biomedicine, health and/or to ongoing development of healthcare systems. RESULTS: This review explores a fundamental question: 'what are the specific criteria that ought reasonably to be met by a data repository if it is to be seen as consistent with this interpretation and viewed as worthy of being accorded the status of 'Data Safe Haven' by key stakeholders'? We propose 12 such criteria. CONTACT: paul.burton@bristol.ac.uk.
Assuntos
Acesso à Informação , Pesquisa Biomédica , Confidencialidade , Atenção à Saúde , Humanos , PesquisaRESUMO
A 4.0 kb region of Methylobacterium extorquens AM1 DNA which complements three mutants unable to convert acetyl-CoA to glyoxylate (and therefore defective in the assimilation of methanol and ethanol) has been isolated and sequenced. It contains two ORFs and the 3'-end of a third one. The mutations in all three mutants mapped within the first ORF, which was designated meaA; it encodes a protein having similarity with methylmalonyl-CoA mutase. However, methylmalonyl-CoA mutase was measured in extracts of one of the mutants and the specific activity was found to be similar to that in extracts of wild-type cells. Furthermore, although the predicted meaA gene product has the proposed cobalamin-binding site, it does not contain a highly conserved sequence (RIARNT) which is present in all known methylmalonyl-CoA mutases; meaA may therefore encode a novel vitamin-B12-dependent enzyme. The predicted polypeptide encoded by the second ORF did not have similarity with any known proteins. The partial ORF encoded a protein with similarity with the 3-oxoacyl-[acyl-carrier-protein] reductases; it was not essential for growth on methanol or ethanol.