Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 133(1): 53-65, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18394989

RESUMO

Mice with a malignant hyperthermia mutation (Y522S) in the ryanodine receptor (RyR1) display muscle contractures, rhabdomyolysis, and death in response to elevated environmental temperatures. We demonstrate that this mutation in RyR1 causes Ca(2+) leak, which drives increased generation of reactive nitrogen species (RNS). Subsequent S-nitrosylation of the mutant RyR1 increases its temperature sensitivity for activation, producing muscle contractures upon exposure to elevated temperatures. The Y522S mutation in humans is associated with central core disease. Many mitochondria in the muscle of heterozygous Y522S mice are swollen and misshapen. The mutant muscle displays decreased force production and increased mitochondrial lipid peroxidation with aging. Chronic treatment with N-acetylcysteine protects against mitochondrial oxidative damage and the decline in force generation. We propose a feed-forward cyclic mechanism that increases the temperature sensitivity of RyR1 activation and underlies heat stroke and sudden death. The cycle eventually produces a myopathy with damaged mitochondria.


Assuntos
Morte Súbita/etiologia , Golpe de Calor/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Temperatura Alta , Humanos , Hipertermia Maligna/metabolismo , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Nitrosação , Estresse Oxidativo , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio
2.
Hum Mol Genet ; 23(14): 3706-15, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24556214

RESUMO

Muscular dystrophy is a progressive muscle wasting disease that is thought to be initiated by unregulated Ca(2+) influx into myofibers leading to their death. Store-operated Ca(2+) entry (SOCE) through sarcolemmal Ca(2+) selective Orai1 channels in complex with STIM1 in the sarcoplasmic reticulum is one such potential disease mechanism for pathologic Ca(2+) entry. Here, we generated a mouse model of STIM1 overexpression in skeletal muscle to determine whether this type of Ca(2+) entry could induce muscular dystrophy. Myofibers from muscle-specific STIM1 transgenic mice showed a significant increase in SOCE in skeletal muscle, modeling an observed increase in the same current in dystrophic myofibers. Histological and biochemical analysis of STIM1 transgenic mice showed fulminant muscle disease characterized by myofiber necrosis, swollen mitochondria, infiltration of inflammatory cells, enhanced interstitial fibrosis and elevated serum creatine kinase levels. This dystrophic-like disease in STIM1 transgenic mice was abrogated by crossing in a transgene expressing a dominant-negative Orai1 (dnOrai1) mutant. The dnOrai1 transgene also significantly reduced the severity of muscular dystrophy in both mdx (dystrophin mutant mice) and δ-sarcoglycan-deficient (Sgcd(-/-)) mouse models of disease. Hence, Ca(2+) influx across an unstable sarcolemma due to increased activity of a STIM1-Orai1 complex is a disease determinant in muscular dystrophy, and hence, SOCE represents a potential therapeutic target.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Distrofias Musculares/patologia , Proteínas de Neoplasias/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/metabolismo , Distrofia Muscular Animal , Proteína ORAI1 , Molécula 1 de Interação Estromal
3.
J Mol Cell Cardiol ; 87: 38-47, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26241845

RESUMO

Stromal interaction molecule 1 (STIM1) is a Ca(2+) sensor that partners with Orai1 to elicit Ca(2+) entry in response to endoplasmic reticulum (ER) Ca(2+) store depletion. While store-operated Ca(2+) entry (SOCE) is important for maintaining ER Ca(2+) homeostasis in non-excitable cells, it is unclear what role it plays in the heart, although STIM1 is expressed in the heart and upregulated during disease. Here we analyzed transgenic mice with STIM1 overexpression in the heart to model the known increase of this protein in response to disease. As expected, STIM1 transgenic myocytes showed enhanced Ca(2+) entry following store depletion and partial co-localization with the type 2 ryanodine receptor (RyR2) within the sarcoplasmic reticulum (SR), as well as enrichment around the sarcolemma. STIM1 transgenic mice exhibited sudden cardiac death as early as 6weeks of age, while mice surviving past 12weeks of age developed heart failure with hypertrophy, induction of the fetal gene program, histopathology and mitochondrial structural alterations, loss of ventricular functional performance and pulmonary edema. Younger, pre-symptomatic STIM1 transgenic mice exhibited enhanced pathology following pressure overload stimulation or neurohumoral agonist infusion, compared to controls. Mechanistically, cardiac myocytes isolated from STIM1 transgenic mice displayed spontaneous Ca(2+) transients that were prevented by the SOCE blocker SKF-96365, increased L-type Ca(2+) channel (LTCC) current, and enhanced Ca(2+) spark frequency. Moreover, adult cardiac myocytes from STIM1 transgenic mice showed both increased diastolic Ca(2+) and maximal transient amplitude but no increase in total SR Ca(2+) load. Associated with this enhanced Ca(2+) profile was an increase in cardiac nuclear factor of activated T-cells (NFAT) and Ca(2+)/calmodulin-dependent kinase II (CaMKII) activity. We conclude that STIM1 has an unexpected function in the heart where it alters communication between the sarcolemma and SR resulting in greater Ca(2+) flux and a leaky SR compartment.


Assuntos
Canais de Cálcio/biossíntese , Cálcio/metabolismo , Cardiomiopatias/genética , Retículo Sarcoplasmático/metabolismo , Animais , Canais de Cálcio/genética , Sinalização do Cálcio/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/biossíntese , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Camundongos , Camundongos Transgênicos , Células Musculares/metabolismo , Células Musculares/patologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/patologia , Molécula 1 de Interação Estromal
4.
Circ Res ; 112(1): 48-56, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22993413

RESUMO

RATIONALE: Mitogen-activated protein kinases (MAPKs) are activated in the heart by disease-inducing and stress-inducing stimuli, where they participate in hypertrophy, remodeling, contractility, and heart failure. A family of dual-specificity phosphatases (DUSPs) directly inactivates each of the MAPK terminal effectors, potentially serving a cardioprotective role. OBJECTIVE: To determine the role of DUSP1 and DUSP4 in regulating p38 MAPK function in the heart and the effect on disease. METHODS AND RESULTS: Here, we generated mice and mouse embryonic fibroblasts lacking both Dusp1 and Dusp4 genes. Although single nulls showed no molecular effects, combined disruption of Dusp1/4 promoted unrestrained p38 MAPK activity in both mouse embryonic fibroblasts and the heart, with no change in the phosphorylation of c-Jun N-terminal kinases or extracellular signal-regulated kinases at baseline or with stress stimulation. Single disruption of either Dusp1 or Dusp4 did not result in cardiac pathology, although Dusp1/4 double-null mice exhibited cardiomyopathy and increased mortality with aging. Pharmacological inhibition of p38 MAPK with SB731445 ameliorated cardiomyopathy in Dusp1/4 double-null mice, indicating that DUSP1/4 function primarily through p38 MAPK in affecting disease. At the cellular level, unrestrained p38 MAPK activity diminished cardiac contractility and Ca2+ handling, which was acutely reversed with a p38 inhibitory compound. Poor function in Dusp1/4 double-null mice also was partially rescued by phospholamban deletion. CONCLUSIONS: Our data demonstrate that Dusp1 and Dusp4 are cardioprotective genes that play a critical role in the heart by dampening p38 MAPK signaling that would otherwise reduce contractility and induce cardiomyopathy.


Assuntos
Cardiomiopatias/enzimologia , Fosfatase 1 de Especificidade Dupla/deficiência , Miócitos Cardíacos/enzimologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Cardiomiopatias/prevenção & controle , Células Cultivadas , Modelos Animais de Doenças , Fosfatase 1 de Especificidade Dupla/genética , Ativação Enzimática , Fibroblastos/enzimologia , Regulação da Expressão Gênica , Hemodinâmica , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Fosfatases , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
5.
J Mol Cell Cardiol ; 52(2): 317-22, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21600216

RESUMO

No other inorganic molecule known in biology is considered as versatile as Ca(2+). In a vast majority of cell types, Ca(2+) acts as a universal second messenger underlying critical cellular processes varying from gene transcription to cell death. Although the role of Ca(2+) in myocyte contraction has been known for over a century, it was only more recently that this divalent cation has been implicated in mediating reactive signal transduction to promote cardiac hypertrophy. However, it remains unclear how Ca(2+)-dependent signaling pathways are regulated/activated in a cardiac myocyte given the prevailing conditions throughout the cytosol where Ca(2+) concentration oscillates between 100 nM and upwards of 1-2 µM during each contractile cycle. In this review we will examine three hypotheses put forward to explain how Ca(2+) might still function as a hypertrophic signaling molecule in cardiac myocytes and discuss the current literature that supports each of these views. This article is part of a special issue entitled "Local Signaling in Myocytes."


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Cardiomegalia/metabolismo , Humanos
6.
Proc Natl Acad Sci U S A ; 106(45): 19023-8, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19864620

RESUMO

Muscular dystrophy is a general term encompassing muscle disorders that cause weakness and wasting, typically leading to premature death. Membrane instability, as a result of a genetic disruption within the dystrophin-glycoprotein complex (DGC), is thought to induce myofiber degeneration, although the downstream mechanism whereby membrane fragility leads to disease remains controversial. One potential mechanism that has yet to be definitively proven in vivo is that unregulated calcium influx initiates disease in dystrophic myofibers. Here we demonstrate that calcium itself is sufficient to cause a dystrophic phenotype in skeletal muscle independent of membrane fragility. For example, overexpression of transient receptor potential canonical 3 (TRPC3) and the associated increase in calcium influx resulted in a phenotype of muscular dystrophy nearly identical to that observed in DGC-lacking dystrophic disease models, including a highly similar molecular signature of gene expression changes. Furthermore, transgene-mediated inhibition of TRPC channels in mice dramatically reduced calcium influx and dystrophic disease manifestations associated with the mdx mutation (dystrophin gene) and deletion of the delta-sarcoglycan (Scgd) gene. These results demonstrate that calcium itself is sufficient to induce muscular dystrophy in vivo, and that TRPC channels are key disease initiators downstream of the unstable membrane that characterizes many types of muscular dystrophy.


Assuntos
Cálcio/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Canais de Cátion TRPC/metabolismo , Análise de Variância , Animais , Western Blotting , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Análise em Microsséries , Distrofias Musculares/etiologia , Canais de Cátion TRPC/antagonistas & inibidores , Transgenes/fisiologia
7.
Proc Natl Acad Sci U S A ; 104(47): 18537-42, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18003898

RESUMO

A heterozygous Ile4898 to Thr (I4898T) mutation in the human type 1 ryanodine receptor/Ca(2+) release channel (RyR1) leads to a severe form of central core disease. We created a mouse line in which the corresponding Ryr1(I4895T) mutation was introduced by using a "knockin" protocol. The heterozygote does not exhibit an overt disease phenotype, but homozygous (IT/IT) mice are paralyzed and die perinatally, apparently because of asphyxia. Histological analysis shows that IT/IT mice have greatly reduced and amorphous skeletal muscle. Myotubes are small, nuclei remain central, myofibrils are disarranged, and no cross striation is obvious. Many areas indicate probable degeneration, with shortened myotubes containing central stacks of pyknotic nuclei. Other manifestations of a delay in completion of late stages of embryogenesis include growth retardation and marked delay in ossification, dermatogenesis, and cardiovascular development. Electron microscopy of IT/IT muscle demonstrates appropriate targeting and positioning of RyR1 at triad junctions and a normal organization of dihydropyridine receptor (DHPR) complexes into RyR1-associated tetrads. Functional studies carried out in cultured IT/IT myotubes show that ligand-induced and DHPR-activated RyR1 Ca(2+) release is absent, although retrograde enhancement of DHPR Ca(2+) conductance is retained. IT/IT mice, in which RyR1-mediated Ca(2+) release is abolished without altering the formation of the junctional DHPR-RyR1 macromolecular complex, provide a valuable model for elucidation of the role of RyR1-mediated Ca(2+) signaling in mammalian embryogenesis.


Assuntos
Cálcio/metabolismo , Homozigoto , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Animais Recém-Nascidos , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Isoleucina/genética , Isoleucina/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Mutação/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Esqueleto , Treonina/genética , Treonina/metabolismo
8.
J Gen Physiol ; 130(4): 365-78, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17846166

RESUMO

Ca(2+) release from intracellular stores is controlled by complex interactions between multiple proteins. Triadin is a transmembrane glycoprotein of the junctional sarcoplasmic reticulum of striated muscle that interacts with both calsequestrin and the type 1 ryanodine receptor (RyR1) to communicate changes in luminal Ca(2+) to the release machinery. However, the potential impact of the triadin association with RyR1 in skeletal muscle excitation-contraction coupling remains elusive. Here we show that triadin binding to RyR1 is critically important for rapid Ca(2+) release during excitation-contraction coupling. To assess the functional impact of the triadin-RyR1 interaction, we expressed RyR1 mutants in which one or more of three negatively charged residues (D4878, D4907, and E4908) in the terminal RyR1 intraluminal loop were mutated to alanines in RyR1-null (dyspedic) myotubes. Coimmunoprecipitation revealed that triadin, but not junctin, binding to RyR1 was abolished in the triple (D4878A/D4907A/E4908A) mutant and one of the double (D4907A/E4908A) mutants, partially reduced in the D4878A/D4907A double mutant, but not affected by either individual (D4878A, D4907A, E4908A) mutations or the D4878A/E4908A double mutation. Functional studies revealed that the rate of voltage- and ligand-gated SR Ca(2+) release were reduced in proportion to the degree of interruption in triadin binding. Ryanodine binding, single channel recording, and calcium release experiments conducted on WT and triple mutant channels in the absence of triadin demonstrated that the luminal loop mutations do not directly alter RyR1 function. These findings demonstrate that junctin and triadin bind to different sites on RyR1 and that triadin plays an important role in ensuring rapid Ca(2+) release during excitation-contraction coupling in skeletal muscle.


Assuntos
Sinalização do Cálcio , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Contração Muscular/fisiologia , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Calsequestrina/metabolismo , Linhagem Celular Transformada , Células Cultivadas , Eletrofisiologia , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Coelhos , Retículo Sarcoplasmático/metabolismo
9.
FASEB J ; 20(2): 329-30, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16284304

RESUMO

Malignant hyperthermia (MH) is a life-threatening disorder characterized by skeletal muscle rigidity and elevated body temperature in response to halogenated anesthetics such as isoflurane or halothane. Mutation of tyrosine 522 of RyR1 (the predominant skeletal muscle calcium release channel) to serine has been associated with human malignant hyperthermia. In the present study, mice created harboring this mutation were found to represent the first murine model of human malignant hyperthermia. Mice homozygous for the Y522S mutation exhibit skeletal defects and die during embryonic development or soon after birth. Heterozygous mice, which correspond to the human occurrence of this mutation, are MH susceptible, experiencing whole body contractions and elevated core temperatures in response to isoflurane exposure or heat stress. Skeletal muscles from heterozygous mice exhibit increased susceptibility to caffeine- and heat-induced contractures in vitro. In addition, the heterozygous expression of the mutation results in enhanced RyR1 sensitivity to activation by temperature, caffeine, and voltage but not uncompensated sarcoplasmic reticulum calcium leak or store depletion. We conclude that the heterozygous expression of the Y522S mutation confers susceptibility to both heat- and anesthetic-induced MH responses.


Assuntos
Anestesia/efeitos adversos , Temperatura Alta/efeitos adversos , Hipertermia Maligna/etiologia , Hipertermia Maligna/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Anestésicos/efeitos adversos , Anestésicos/toxicidade , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Modelos Animais de Doenças , Isoflurano/efeitos adversos , Isoflurano/toxicidade , Hipertermia Maligna/metabolismo , Camundongos , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Mutação
10.
J Appl Physiol (1985) ; 118(8): 1050-8, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25701006

RESUMO

Sarcolipin (SLN) is a regulator of sarcoendoplasmic reticulum calcium ATPase in skeletal muscle. Recent studies using SLN-null mice have identified SLN as a key player in muscle thermogenesis and metabolism. In this study, we exploited a SLN overexpression (Sln(OE)) mouse model to determine whether increased SLN level affected muscle contractile properties, exercise capacity/fatigue, and metabolic rate in whole animals and isolated muscle. We found that Sln(OE) mice are more resistant to fatigue and can run significantly longer distances than wild-type (WT). Studies with isolated extensor digitorum longus (EDL) muscles showed that Sln(OE) EDL produced higher twitch force than WT. The force-frequency curves were not different between WT and Sln(OE) EDLs, but at lower frequencies the pyruvate-induced potentiation of force was significantly higher in Sln(OE) EDL. SLN overexpression did not alter the twitch and force-frequency curve in isolated soleus muscle. However, during a 10-min fatigue protocol, both EDL and soleus from Sln(OE) mice fatigued significantly less than WT muscles. Interestingly, Sln(OE) muscles showed higher carnitine palmitoyl transferase-1 protein expression, which could enhance fatty acid metabolism. In addition, lactate dehydrogenase expression was higher in Sln(OE) EDL, suggesting increased glycolytic capacity. We also found an increase in store-operated calcium entry (SOCE) in isolated flexor digitorum brevis fibers of Sln(OE) compared with WT mice. These data allow us to conclude that increased SLN expression improves skeletal muscle performance during prolonged muscle activity by increasing SOCE and muscle energetics.


Assuntos
Tolerância ao Exercício , Proteínas Musculares/fisiologia , Músculo Esquelético/fisiologia , Proteolipídeos/fisiologia , Animais , Cálcio/metabolismo , Calsequestrina/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fadiga Muscular , Miosinas/metabolismo , Condicionamento Físico Animal , Ácido Pirúvico/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
11.
Sci Signal ; 7(348): ra100, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25336613

RESUMO

The Ras-related guanosine triphosphatase RhoA mediates pathological cardiac hypertrophy, but also promotes cell survival and is cardioprotective after ischemia/reperfusion injury. To understand how RhoA mediates these opposing roles in the myocardium, we generated mice with a cardiomyocyte-specific deletion of RhoA. Under normal conditions, the hearts from these mice showed functional, structural, and growth parameters similar to control mice. Additionally, the hearts of the cardiomyocyte-specific, RhoA-deficient mice subjected to transverse aortic constriction (TAC)-a procedure that induces pressure overload and, if prolonged, heart failure-exhibited a similar amount of hypertrophy as those of the wild-type mice subjected to TAC. Thus, neither normal cardiac homeostasis nor the initiation of compensatory hypertrophy required RhoA in cardiomyocytes. However, in response to chronic TAC, hearts from mice with cardiomyocyte-specific deletion of RhoA showed greater dilation, with thinner ventricular walls and larger chamber dimensions, and more impaired contractile function than those from control mice subjected to chronic TAC. These effects were associated with aberrant calcium signaling, as well as decreased activity of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and AKT. In addition, hearts from mice with cardiomyocyte-specific RhoA deficiency also showed less fibrosis in response to chronic TAC, with decreased transcriptional activation of genes involved in fibrosis, including myocardin response transcription factor (MRTF) and serum response factor (SRF), suggesting that the fibrotic response to stress in the heart depends on cardiomyocyte-specific RhoA signaling. Our data indicated that RhoA regulates multiple pathways in cardiomyocytes, mediating both cardioprotective (hypertrophy without dilation) and cardio-deleterious effects (fibrosis).


Assuntos
Fibrose Endomiocárdica/enzimologia , Insuficiência Cardíaca/enzimologia , Sistema de Sinalização das MAP Quinases , Miócitos Cardíacos/enzimologia , Estresse Fisiológico , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Doenças da Aorta/enzimologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Fibrose Endomiocárdica/genética , Fibrose Endomiocárdica/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Camundongos , Camundongos Transgênicos , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP
12.
Mol Cell Biol ; 34(11): 1991-2002, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24662047

RESUMO

Unregulated Ca(2+) entry is thought to underlie muscular dystrophy. Here, we generated skeletal-muscle-specific transgenic (TG) mice expressing the Na(+)-Ca(2+) exchanger 1 (NCX1) to model its identified augmentation during muscular dystrophy. The NCX1 transgene induced dystrophy-like disease in all hind-limb musculature, as well as exacerbated the muscle disease phenotypes in δ-sarcoglycan (Sgcd(-/-)), Dysf(-/-), and mdx mouse models of muscular dystrophy. Antithetically, muscle-specific deletion of the Slc8a1 (NCX1) gene diminished hind-limb pathology in Sgcd(-/-) mice. Measured increases in baseline Na(+) and Ca(2+) in dystrophic muscle fibers of the hind-limb musculature predicts a net Ca(2+) influx state due to reverse-mode operation of NCX1, which mediates disease. However, the opposite effect is observed in the diaphragm, where NCX1 overexpression mildly protects from dystrophic disease through a predicted enhancement in forward-mode NCX1 operation that reduces Ca(2+) levels. Indeed, Atp1a2(+/-) (encoding Na(+)-K(+) ATPase α2) mice, which have reduced Na(+) clearance rates that would favor NCX1 reverse-mode operation, showed exacerbated disease in the hind limbs of NCX1 TG mice, similar to treatment with the Na(+)-K(+) ATPase inhibitor digoxin. Treatment of Sgcd(-/-) mice with ranolazine, a broadly acting Na(+) channel inhibitor that should increase NCX1 forward-mode operation, reduced muscular pathology.


Assuntos
Cálcio/metabolismo , Distrofia Muscular Animal/genética , Trocador de Sódio e Cálcio/metabolismo , Sódio/metabolismo , Acetanilidas/farmacologia , Animais , Digoxina/farmacologia , Disferlina , Inibidores Enzimáticos/farmacologia , Membro Posterior/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Músculo Esquelético/patologia , Piperazinas/farmacologia , Ranolazina , Sarcoglicanas/genética , Bloqueadores dos Canais de Sódio/farmacologia , Trocador de Sódio e Cálcio/genética , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética
13.
Neuromuscul Disord ; 23(2): 120-32, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23183335

RESUMO

Central core disease, one of the most common congenital myopathies in humans, has been linked to mutations in the RYR1 gene encoding the Ca(2+) release channel of the sarcoplasmic reticulum (RyR1). Functional analyses showed that disease-associated RYR1 mutations led to impairment of skeletal muscle Ca(2+) homeostasis; however, thorough understanding of the molecular mechanisms underlying central core disease and other RyR1-related conditions is still lacking. We screened by sequencing the complete RYR1 transcripts in ten unrelated patients with central core disease and identified five novel, p.M4640R, p.L4647P, p.F4808L, p.D4918N and p.F4941C, and four recurrent mutations. Four of the novel mutations involved amino acid residues that were positioned within putative transmembrane segments of the RyR1. The pathogenic character of the identified mutations was demonstrated by bioinformatic analyses and by the in vitro functional studies in HEK293 cells and RYR1-null (dyspedic) myotubes. Characterization of Ca(2+) channel properties of RyR1s carrying one recurrent and two novel mutations upholds the view that diminished intracellular Ca(2+) release caused by impaired Ca(2+) channel gating and/or Ca(2+) permeability is an important component of central core disease etiology. This study expands the list of functionally characterized disease-associated RyR1 mutations, increasing the value of genetic diagnosis for RyR1-related disorders.


Assuntos
Contração Muscular/fisiologia , Mutação/genética , Miopatia da Parte Central/genética , Miopatia da Parte Central/fisiopatologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Adolescente , Adulto , Cálcio/metabolismo , Células Cultivadas , Criança , Pré-Escolar , Feminino , Testes Genéticos , Células HEK293 , Homeostase/fisiologia , Humanos , Lactente , Recém-Nascido , Masculino , Fibras Musculares Esqueléticas/metabolismo , Miopatia da Parte Central/diagnóstico , Linhagem , Polimorfismo Genético/genética , Estudos Retrospectivos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
14.
Nat Med ; 18(10): 1575-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22961106

RESUMO

The role of skeletal muscle in nonshivering thermogenesis (NST) is not well understood. Here we show that sarcolipin (Sln), a newly identified regulator of the sarco/endoplasmic reticulum Ca(2+)-ATPase (Serca) pump, is necessary for muscle-based thermogenesis. When challenged to acute cold (4 °C), Sln(-/-) mice were not able to maintain their core body temperature (37 °C) and developed hypothermia. Surgical ablation of brown adipose tissue and functional knockdown of Ucp1 allowed us to highlight the role of muscle in NST. Overexpression of Sln in the Sln-null background fully restored muscle-based thermogenesis, suggesting that Sln is the basis for Serca-mediated heat production. We show that ryanodine receptor 1 (Ryr1)-mediated Ca(2+) leak is an important mechanism for Serca-activated heat generation. Here we present data to suggest that Sln can continue to interact with Serca in the presence of Ca(2+), which can promote uncoupling of the Serca pump and cause futile cycling. We further show that loss of Sln predisposes mice to diet-induced obesity, which suggests that Sln-mediated NST is recruited during metabolic overload. These data collectively suggest that SLN is an important mediator of muscle thermogenesis and whole-body energy metabolism.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Proteínas Musculares/metabolismo , Proteolipídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Termogênese/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Metabolismo Energético/genética , Células HEK293 , Humanos , Canais Iônicos/deficiência , Canais Iônicos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Obesidade/genética , Proteolipídeos/deficiência , Proteolipídeos/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteína Desacopladora 1
15.
J Clin Invest ; 122(1): 280-90, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22133878

RESUMO

Antagonists of L-type Ca²âº channels (LTCCs) have been used to treat human cardiovascular diseases for decades. However, these inhibitors can have untoward effects in patients with heart failure, and their overall therapeutic profile remains nebulous given differential effects in the vasculature when compared with those in cardiomyocytes. To investigate this issue, we examined mice heterozygous for the gene encoding the pore-forming subunit of LTCC (calcium channel, voltage-dependent, L type, α1C subunit [Cacna1c mice; referred to herein as α1C⁻/⁺ mice]) and mice in which this gene was loxP targeted to achieve graded heart-specific gene deletion (termed herein α1C-loxP mice). Adult cardiomyocytes from the hearts of α1C⁻/⁺ mice at 10 weeks of age showed a decrease in LTCC current and a modest decrease in cardiac function, which we initially hypothesized would be cardioprotective. However, α1C⁻/⁺ mice subjected to pressure overload stimulation, isoproterenol infusion, and swimming showed greater cardiac hypertrophy, greater reductions in ventricular performance, and greater ventricular dilation than α1C⁺/⁺ controls. The same detrimental effects were observed in α1C-loxP animals with a cardiomyocyte-specific deletion of one allele. More severe reductions in α1C protein levels with combinatorial deleted alleles produced spontaneous cardiac hypertrophy before 3 months of age, with early adulthood lethality. Mechanistically, our data suggest that a reduction in LTCC current leads to neuroendocrine stress, with sensitized and leaky sarcoplasmic reticulum Ca²âº release as a compensatory mechanism to preserve contractility. This state results in calcineurin/nuclear factor of activated T cells signaling that promotes hypertrophy and disease.


Assuntos
Canais de Cálcio Tipo L/deficiência , Cardiomegalia/etiologia , Insuficiência Cardíaca/etiologia , Animais , Calcineurina/metabolismo , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Técnicas de Silenciamento de Genes , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Heterozigoto , Homozigoto , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Sistemas Neurossecretores/metabolismo , Estresse Fisiológico
16.
J Clin Invest ; 121(3): 1044-52, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21285509

RESUMO

Muscular dystrophies (MDs) comprise a group of degenerative muscle disorders characterized by progressive muscle wasting and often premature death. The primary defect common to most MDs involves disruption of the dystrophin-glycoprotein complex (DGC). This leads to sarcolemmal instability and Ca(2+) influx, inducing cellular necrosis. Here we have shown that the dystrophic phenotype observed in δ-sarcoglycan­null (Sgcd(­/­)) mice and dystrophin mutant mdx mice is dramatically improved by skeletal muscle­specific overexpression of sarcoplasmic reticulum Ca(2+) ATPase 1 (SERCA1). Rates of myofiber central nucleation, tissue fibrosis, and serum creatine kinase levels were dramatically reduced in Sgcd(­/­) and mdx mice with the SERCA1 transgene, which also rescued the loss of exercise capacity in Sgcd(­/­) mice. Adeno-associated virus­SERCA2a (AAV-SERCA2a) gene therapy in the gastrocnemius muscle of Sgcd(­/­) mice mitigated dystrophic disease. SERCA1 overexpression reversed a defect in sarcoplasmic reticulum Ca(2+) reuptake that characterizes dystrophic myofibers and reduced total cytosolic Ca(2+). Further, SERCA1 overexpression almost completely rescued the dystrophic phenotype in a mouse model of MD driven solely by Ca(2+) influx. Mitochondria isolated from the muscle of SERCA1-Sgcd(­/­) mice were no longer swollen and calpain activation was reduced, suggesting protection from Ca(2+)-driven necrosis. Our results suggest a novel therapeutic approach using SERCA1 to abrogate the altered intracellular Ca(2+) levels that underlie most forms of MD.


Assuntos
Distrofina/genética , Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/patologia , Sarcoglicanas/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Animais , Cálcio/metabolismo , Creatina Quinase/genética , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Necrose , Fenótipo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Transgenes
17.
J Clin Invest ; 120(10): 3680-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20890047

RESUMO

Cyclophilin D (which is encoded by the Ppif gene) is a mitochondrial matrix peptidyl-prolyl isomerase known to modulate opening of the mitochondrial permeability transition pore (MPTP). Apart from regulating necrotic cell death, the physiologic function of the MPTP is largely unknown. Here we have shown that Ppif(-/-) mice exhibit substantially greater cardiac hypertrophy, fibrosis, and reduction in myocardial function in response to pressure overload stimulation than control mice. In addition, Ppif(-/-) mice showed greater hypertrophy and lung edema as well as reduced survival in response to sustained exercise stimulation. Cardiomyocyte-specific transgene expression of cyclophilin D in Ppif(-/-) mice rescued the enhanced hypertrophy, reduction in cardiac function, and rapid onset of heart failure following pressure overload stimulation. Mechanistically, the maladaptive phenotype in the hearts of Ppif(-/-) mice was associated with an alteration in MPTP-mediated Ca(2+) efflux resulting in elevated levels of mitochondrial matrix Ca(2+) and enhanced activation of Ca(2+)-dependent dehydrogenases. Elevated matrix Ca(2+) led to increased glucose oxidation relative to fatty acids, thereby limiting the metabolic flexibility of the heart that is critically involved in compensation during stress. These findings suggest that the MPTP maintains homeostatic mitochondrial Ca(2+) levels to match metabolism with alterations in myocardial workload, thereby suggesting a physiologic function for the MPTP.


Assuntos
Cálcio/metabolismo , Ciclofilinas/fisiologia , Insuficiência Cardíaca/etiologia , Proteínas de Transporte da Membrana Mitocondrial , Envelhecimento/metabolismo , Animais , Cardiomegalia/etiologia , Peptidil-Prolil Isomerase F , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Contração Miocárdica
18.
J Biol Chem ; 284(3): 1514-22, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-18957419

RESUMO

Recently, we identified a novel signaling pathway involving Epac, Rap, and phospholipase C (PLC)epsilon that plays a critical role in maximal beta-adrenergic receptor (betaAR) stimulation of Ca2+-induced Ca2+ release (CICR) in cardiac myocytes. Here we demonstrate that PLCepsilon phosphatidylinositol 4,5-bisphosphate hydrolytic activity and PLCepsilon-stimulated Rap1 GEF activity are both required for PLCepsilon-mediated enhancement of sarcoplasmic reticulum Ca2+ release and that PLCepsilon significantly enhances Rap activation in response to betaAR stimulation in the heart. Downstream of PLCepsilon hydrolytic activity, pharmacological inhibition of PKC significantly inhibited both betaAR- and Epac-stimulated increases in CICR in PLCepsilon+/+ myocytes but had no effect in PLCepsilon-/- myocytes. betaAR and Epac activation caused membrane translocation of PKCepsilon in PLCepsilon+/+ but not PLCepsilon-/- myocytes and small interfering RNA-mediated PKCepsilon knockdown significantly inhibited both betaAR and Epac-mediated CICR enhancement. Further downstream, the Ca2+/calmodulin-dependent protein kinase II (CamKII) inhibitor, KN93, inhibited betaAR- and Epac-mediated CICR in PLCepsilon+/+ but not PLCepsilon-/- myocytes. Epac activation increased CamKII Thr286 phosphorylation and enhanced phosphorylation at CamKII phosphorylation sites on the ryanodine receptor (RyR2) (Ser2815) and phospholamban (Thr17) in a PKC-dependent manner. Perforated patch clamp experiments revealed that basal and betaAR-stimulated peak L-type current density are similar in PLCepsilon+/+ and PLCepsilon-/- myocytes suggesting that control of sarcoplasmic reticulum Ca2+ release, rather than Ca2+ influx through L-type Ca2+ channels, is the target of regulation of a novel signal transduction pathway involving sequential activation of Epac, PLCepsilon, PKCepsilon, and CamKII downstream of betaAR activation.


Assuntos
Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Miocárdio/enzimologia , Fosfoinositídeo Fosfolipase C/metabolismo , Animais , Benzilaminas/farmacologia , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Membrana Celular/enzimologia , Membrana Celular/genética , Ativação Enzimática/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Camundongos Knockout , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/enzimologia , Fosfatidilinositol 4,5-Difosfato , Fosfoinositídeo Fosfolipase C/genética , Fosforilação/fisiologia , Proteína Quinase C-épsilon/genética , Proteína Quinase C-épsilon/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/fisiologia , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/enzimologia , Retículo Sarcoplasmático/genética , Sulfonamidas/farmacologia
19.
J Biol Chem ; 281(52): 40354-68, 2006 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-17071618

RESUMO

The skeletal muscle Ca(2+)-release channel (ryanodine receptor type 1 (RyR1)) is a redox sensor, susceptible to reversible S-nitrosylation, S-glutathionylation, and disulfide oxidation. So far, Cys-3635 remains the only cysteine residue identified as functionally relevant to the redox sensing properties of the channel. We demonstrate that expression of the C3635A-RyR1 mutant in RyR1-null myotubes alters the sensitivity of the ryanodine receptor to activation by voltage, indicating that Cys-3635 is involved in voltage-gated excitation-contraction coupling. However, H(2)O(2) treatment of C3635A-RyR1 channels or wild-type RyR1, following their expression in human embryonic kidney cells, enhances [(3)H]ryanodine binding to the same extent, suggesting that cysteines other than Cys-3635 are responsible for the oxidative enhancement of channel activity. Using a combination of Western blotting and sulfhydryl-directed fluorescent labeling, we found that two large regions of RyR1 (amino acids 1-2401 and 3120-4475), previously shown to be involved in disulfide bond formation, are also major sites of both S-nitrosylation and S-glutathionylation. Using selective isotopecoded affinity tag labeling of RyR1 and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy, we identified, out of the 100 cysteines in each RyR1 subunit, 9 that are endogenously modified (Cys-36, Cys-315, Cys-811, Cys-906, Cys-1591, Cys-2326, Cys-2363, Cys-3193, and Cys-3635) and another 3 residues that were only modified with exogenous redox agents (Cys-253, Cys-1040, and Cys-1303). We also identified the types of redox modification each of these cysteines can undergo. In summary, we have identified a discrete subset of cysteines that are likely to be involved in the functional response of RyR1 to different redox modifications (S-nitrosylation, S-glutathionylation, and oxidation to disulfides).


Assuntos
Cisteína/química , Dissulfetos/metabolismo , Glutationa/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Linhagem Celular , Cisteína/metabolismo , Dissulfetos/química , Glutationa/química , Humanos , Hidrólise , Masculino , Oxirredução , Fragmentos de Peptídeos/metabolismo , Coelhos , Espécies Reativas de Nitrogênio/química , Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/metabolismo , Tripsina/metabolismo
20.
Proc Natl Acad Sci U S A ; 103(32): 12179-84, 2006 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16873551

RESUMO

Mutations in the cardiac ryanodine receptor 2 (RyR2) have been associated with catecholaminergic polymorphic ventricular tachycardia and a form of arrhythmogenic right ventricular dysplasia. To study the relationship between RyR2 function and these phenotypes, we developed knockin mice with the human disease-associated RyR2 mutation R176Q. Histologic analysis of hearts from RyR2(R176Q/+) mice revealed no evidence of fibrofatty infiltration or structural abnormalities characteristic of arrhythmogenic right ventricular dysplasia, but right ventricular end-diastolic volume was decreased in RyR2(R176Q/+) mice compared with controls, indicating subtle functional impairment due to the presence of a single mutant allele. Ventricular tachycardia (VT) was observed after caffeine and epinephrine injection in RyR2(R176Q/+), but not in WT, mice. Intracardiac electrophysiology studies with programmed stimulation also elicited VT in RyR2(R176Q/+) mice. Isoproterenol administration during programmed stimulation increased both the number and duration of VT episodes in RyR2(R176Q/+) mice, but not in controls. Isolated cardiomyocytes from RyR2(R176Q/+) mice exhibited a higher incidence of spontaneous Ca(2+) oscillations in the absence and presence of isoproterenol compared with controls. Our results suggest that the R176Q mutation in RyR2 predisposes the heart to catecholamine-induced oscillatory calcium-release events that trigger a calcium-dependent ventricular arrhythmia.


Assuntos
Cardiomiopatias/genética , Catecolaminas/metabolismo , Mutação , Miocárdio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Taquicardia Ventricular/genética , Animais , Cafeína/farmacologia , Cardiomiopatias/patologia , Estimulantes do Sistema Nervoso Central/farmacologia , Epinefrina/farmacologia , Predisposição Genética para Doença , Masculino , Camundongos , Camundongos Transgênicos , Taquicardia Ventricular/patologia , Vasoconstritores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA