Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(6): 2603-2613, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35129333

RESUMO

The development of smart and sustainable photocatalysts is in high priority for the synthesis of H2O2 because the global demand for H2O2 is sharply rising. Currently, the global market share for H2O2 is around 4 billion US$ and is expected to grow by about 5.2 billion US$ by 2026. Traditional synthesis of H2O2 via the anthraquinone method is associated with the generation of substantial chemical waste as well as the requirement of a high energy input. In this respect, the oxidative transformation of pure water is a sustainable solution to meet the global demand. In fact, several photocatalysts have been developed to achieve this chemistry. However, 97% of the water on our planet is seawater, and it contains 3.0-5.0% of salts. The presence of salts in water deactivates the existing photocatalysts, and therefore, the existing photocatalysts have rarely shown reactivity toward seawater. Considering this, a sustainable heterogeneous photocatalyst, derived from hydrolysis lignin, has been developed, showing an excellent reactivity toward generating H2O2 directly from seawater under air. In fact, in the presence of this catalyst, we have been able to achieve 4085 µM of H2O2. Expediently, the catalyst has shown longer durability and can be recycled more than five times to generate H2O2 from seawater. Finally, full characterizations of this smart photocatalyst and a detailed mechanism have been proposed on the basis of the experimental evidence and multiscale/level calculations.

2.
Angew Chem Int Ed Engl ; 55(1): 292-6, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26577114

RESUMO

We describe a catalytic system composed of rhodium nanoparticles immobilized in a Lewis acidic ionic liquid. The combined system catalyzes the hydrogenation of quinolines, pyridines, benzofurans, and furan to access the corresponding heterocycles, important molecules present in fine chemicals, agrochemicals, and pharmaceuticals. The catalyst is highly selective, acting only on the heteroaromatic ring, and not interfering with other reducible functional groups.

3.
Chimia (Aarau) ; 69(12): 765-768, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26842327

RESUMO

The utilization of CO(2) as a C1 synthon is becoming increasingly important as a feedstock derived from carbon capture and storage technologies. Herein, we describe some of our recent research on carbon dioxide valorization, notably, using organocatalysts to convert CO(2) into carboxylic acid, ester, formyl and methyl groups on various organic molecules. We describe these studies within the broader context of CO(2) capture and valorization and suggest approaches for future research.

4.
ACS Catal ; 14(15): 11389-11399, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39114087

RESUMO

Nickel-based oxides and oxyhydroxide catalysts exhibit state-of-the-art activity for the sluggish oxygen evolution reaction (OER) under alkaline conditions. A widely employed strategy to increase the gravimetric activity of the catalyst is to increase the active surface area via nanostructuring or decrease the particle size. However, the fundamental understanding about how tuning these parameters influences the density of oxidized species and their reaction kinetics remains unclear. Here, we use solution combustion synthesis, a low-cost and scalable approach, to synthesize a series of Fe0.1Ni0.9O samples from different precursor salts. Based on the precursor salt, the nanoparticle size can be changed significantly from ∼2.5 to ∼37 nm. The OER activity at pH 13 trends inversely with the particle size. Using operando time-resolved optical spectroscopy, we quantify the density of oxidized species as a function of potential and demonstrate that the OER kinetics exhibits a second-order dependence on the density of these species, suggesting that the OER mechanism relies on O-O coupling between neighboring oxidized species. With the decreasing particle size, the density of species accumulated is found to increase, and their intrinsic reactivity for the OER is found to decrease, attributed to the stronger binding of *O species (i.e., a cathodic shift of species energetics). This signifies that the high apparent OER activity per geometric area of the smaller nanoparticles is driven by their ability to accumulate a larger density of oxidized species. This study not only experimentally disentangles the influence of the density of oxidized species and intrinsic kinetics on the overall rate of the OER but also highlights the importance of tuning these parameters independently to develop more active OER catalysts.

5.
Chempluschem ; 82(1): 144-151, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31961507

RESUMO

A series of dicationic styrene-functionalized imidazolium-based salts, in which the two imidazolium rings are bridged by a functionalized spacer, are prepared. The salts are polymerized to afford cross-linked imidazolium-based ionic polystyrene materials, which, owing to the presence of the functionalized spaces, should be highly active organocatalysts for the cycloaddition of CO2 to epoxides to afford cyclic carbonates (CCE reaction). The catalytic activities of the polymers are evaluated in the CCE reaction. The most active catalyst incorporates a diol functionality and is active at 80 °C and a pressure of 4 bar at a loading of 5 mol %, which is comparable to the most active organocatalysts. Moreover, high yields can be obtained under atmospheric pressure upon increasing the temperature to 120 °C. Under harsher conditions, the catalyst is highly active at a loading one order of magnitude lower, highlighting the importance of benchmark conditions for the CCE reaction. Moreover, the polymer catalysts are advantageous because they can be used at low catalyst loadings, the carbonate product is easily isolated in pure form, and loss of activity of the recovered polymer catalyst is not observed during reuse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA