Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(15): e2301054120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011213

RESUMO

The establishment of beneficial interactions with microbes has helped plants to modulate root branching plasticity in response to environmental cues. However, how the plant microbiota harmonizes with plant roots to control their branching is unknown. Here, we show that the plant microbiota influences root branching in the model plant Arabidopsis thaliana. We define that the microbiota's ability to control some stages in root branching can be independent of the phytohormone auxin that directs lateral root development under axenic conditions. In addition, we revealed a microbiota-driven mechanism controlling lateral root development that requires the induction of ethylene response pathways. We show that the microbial effects on root branching can be relevant for plant responses to environmental stresses. Thus, we discovered a microbiota-driven regulatory pathway controlling root branching plasticity that could contribute to plant adaptation to different ecosystems.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Genome ; 63(12): 583-595, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32853534

RESUMO

Cacao (Theobroma cacao L.), an introduced tree crop in Dominica, is important for foreign exchange earnings from fine or flavour cocoa. The genetic structure of farmed cacao in Dominica was examined to identify varieties for conservation, breeding, and propagation to improve their cocoa industry. Cacao trees (156) from 73 sites over seven geographical regions were genotyped at 192 single nucleotide polymorphism (SNP) markers. Identity, regional differentiation, phylogenetic, multi-variate, ancestry, and core collection analyses were performed. Farmed cacao germplasm had moderate gene diversity (He = 0.320 ± 0.005) from generally unique trees, but cocoa growing regions were genetically similar. Synonymous matching (16.3%) showed that some clonal material was supplied to farmers. Cacao trees were mainly mixed from Amelonado, Criollo, Iquitos, Contamana, and Marañon ancestries, with predominantly Amelonado-Criollo hybrids. Criollo ancestry, linked to fine or flavour cocoa, was found at more than 30% in 28 unique trees. Forty-five trees, containing the SNP diversity of cacao in Dominica, are recommended as a core germplasm collection. This study identifies promising trees for improving cocoa quality; provides genetic evidence that community, regional, or country-wide pooling would not compromise the exclusive fine or flavour cocoa industry; and discusses other implications towards improving the Dominican cocoa industry.


Assuntos
Cacau/classificação , Cacau/genética , Variação Genética , Polimorfismo de Nucleotídeo Único , Cruzamento , Dominica , Genótipo , Filogenia
3.
Genome ; 63(2): 103-114, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31682479

RESUMO

Single nucleotide polymorphisms (SNPs) are preferred markers for DNA fingerprinting and diversity studies in cacao (Theobroma cacao L.). Yet, a consensus SNP panel with a minimum number of SNPs for optimal identity analysis is unavailable for cacao. An initial set of 146 SNP panels of varying sizes were assembled based on heterozygosity, linkage disequilibrium (LD), linkage group (LG) distribution, major allele frequency, minor allele frequency (MiAF), polymorphism information content (PIC), and random distribution. These panels were assessed to determine their ability to distinguish among a training set of 155 accessions. The panels with the best separation ability were supplemented with additional SNPs to create 16 designer panels, which separated all 155 accessions. The 16 designer SNP panels were then assessed on a dataset of 1220 accessions coming from 10 ancestral groups. Increasing the number of SNPs generally yielded improved resolution of genetic identities with concomitant reduction of synonymous groups. The number and choice of SNPs were critical factors with LD, MiAF, and PIC being important selection attributes but an even LG distribution was unnecessary. A robust set of 96 SNPs is recommended as a minimal core SNP panel for cacao DNA fingerprinting to the international cacao community.


Assuntos
Cacau/genética , Impressões Digitais de DNA , Polimorfismo de Nucleotídeo Único , Frequência do Gene , Desequilíbrio de Ligação
4.
Physiol Mol Biol Plants ; 25(2): 361-375, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30956420

RESUMO

Cocoa is among the top foreign exchange earners in Uganda's agriculture sector and has benefitted the livelihood of farmers involved in production. Although cacao cultivation was adopted in the early 1900s, little is known about the on-farm diversity of the crop. A total of 125 cacao landraces were surveyed from eight districts in the Central and Western Regions to evaluate the morphological and genetic diversity of cacao in Uganda. Passport data included site, tree, fruit and seed information. Trees were genotyped using 96 single nucleotide polymorphism markers on a Fluidigm platform. Low heterozygosity was detected in the germplasm in both the Central [observed heterozygosity (H o ) = 0.295, expected heterozygosity (H e) = 0.334] and Western Regions (H o = 0.317, H e = 0.322). Genetic variation in both regions was generally comparable but the regions could be differentiated from each other. Inbreeding was noted in the Central Region while a greater sharing of genetic material was observed in the Western Region. The morphological and genetic data indicated that the Ugandan collection was an interspersed group with low to moderate variation with some separation of the Central from Western regions. Ancestry analysis indicated that the majority of the accessions were hybrids of Marañon lineage but also had Amelonado and Iquitos genetic backgrounds. These findings are consistent with the history of the movement of cacao into Uganda. A core collection of 18 individuals to represent the genetic diversity as well as 12 additional trees with possible advantageous traits is proposed.

5.
Planta ; 239(3): 695-705, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24363030

RESUMO

Past genetic studies have shown three independent loci designated O, R and M control spathe color in Anthurium andraeanum (Hort.). To evaluate the genetic model and to understand the control of anthocyanin biosynthesis at the molecular level, the expression of the anthocyanin biosynthetic genes, CHS, F3H, DFR, ANS and F3'H, was examined at the mRNA and protein levels and correlated to anthocyanin content and spathe color in eight genetically characterized anthurium cultivars representing different states of the O, R and M loci. The results showed that the expression of F3H and ANS was co-regulated by a putative transcription factor encoded by the R locus, and the expression of DFR was regulated by a putative transcription factor encoded by the O locus. White cultivars, which were in the homozygous recessive state for either O or R or both, exhibited reduced expression of the anthocyanin biosynthetic genes and hence had negligible levels of anthocyanin. Cultivars that were mm displayed reduced expression of F3'H suggesting that it may either encode a defective form of the F3'H gene or a regulator that controls its expression. Additionally, a correlation between anthocyanin abundance and the expression of F3'H in the red cultivars suggested that F3'H expression may be a key control point in the regulation of anthocyanin biosynthesis in anthurium and hence plays a major role in influencing the shade intensity in red cultivars. These findings provide evidence in support of the genetic model for color inheritance in the spathe.


Assuntos
Antocianinas/biossíntese , Araceae/genética , Pigmentação/genética , Proteínas de Plantas/genética , Araceae/enzimologia , Imunoensaio , Filogenia , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase
6.
Nat Commun ; 15(1): 5377, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918389

RESUMO

Polyploidy, the result of whole-genome duplication (WGD), is a major driver of eukaryote evolution. Yet WGDs are hugely disruptive mutations, and we still lack a clear understanding of their fitness consequences. Here, we study whether WGDs result in greater diversity of genomic structural variants (SVs) and how they influence evolutionary dynamics in a plant genus, Cochlearia (Brassicaceae). By using long-read sequencing and a graph-based pangenome, we find both negative and positive interactions between WGDs and SVs. Masking of recessive mutations due to WGDs leads to a progressive accumulation of deleterious SVs across four ploidal levels (from diploids to octoploids), likely reducing the adaptive potential of polyploid populations. However, we also discover putative benefits arising from SV accumulation, as more ploidy-specific SVs harbor signals of local adaptation in polyploids than in diploids. Together, our results suggest that SVs play diverse and contrasting roles in the evolutionary trajectories of young polyploids.


Assuntos
Evolução Molecular , Duplicação Gênica , Genoma de Planta , Poliploidia , Genoma de Planta/genética , Variação Estrutural do Genoma/genética , Mutação
7.
PLoS One ; 16(12): e0261364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34890418

RESUMO

Anthurium andraeanum (Hort.) is an important ornamental in the tropical cut-flower industry. However, there is currently insufficient information to establish a clear connection between the genetic model(s) proposed and the putative genes involved in the differentiation between colors. In this study, 18 cDNA libraries related to the spathe color and developmental stages of A. andraeanum were characterized by transcriptome sequencing (RNA-seq). For the de novo transcriptome, a total of 114,334,082 primary sequence reads were obtained from the Illumina sequencer and were assembled into 151,652 unigenes. Approximately 58,476 transcripts were generated and used for comparative transcriptome analysis between three cultivars that differ in spathe color ('Sasha' (white), 'Honduras' (red), and 'Rapido' (purple)). A large number of differentially expressed genes (8,324), potentially involved in multiple biological and metabolic pathways, were identified, including genes in the flavonoid and anthocyanin biosynthetic pathways. Our results showed that the chalcone isomerase (CHI) gene presented the strongest evidence for an association with differences in color and the highest correlation with other key genes (flavanone 3-hydroxylase (F3H), flavonoid 3'5' hydroxylase (F3'5'H)/ flavonoid 3'-hydroxylase (F3'H), and leucoanthocyanidin dioxygenase (LDOX)) in the anthocyanin pathway. We also identified a differentially expressed cytochrome P450 gene in the late developmental stage of the purple spathe that appeared to determine the difference between the red- and purple-colored spathes. Furthermore, transcription factors related to putative MYB-domain protein that may control anthocyanin pathway were identified through a weighted gene co-expression network analysis (WGCNA). The results provided basic sequence information for future research on spathe color, which have important implications for this ornamental breeding strategies.


Assuntos
Araceae/metabolismo , Flores/metabolismo , Proteínas de Plantas/metabolismo , Araceae/genética , Araceae/crescimento & desenvolvimento , Cor , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Filogenia , Pigmentação , Proteínas de Plantas/genética , Transcriptoma
8.
Science ; 371(6525)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33214288

RESUMO

Plant roots and animal guts have evolved specialized cell layers to control mineral nutrient homeostasis. These layers must tolerate the resident microbiota while keeping homeostatic integrity. Whether and how the root diffusion barriers in the endodermis, which are critical for the mineral nutrient balance of plants, coordinate with the microbiota is unknown. We demonstrate that genes controlling endodermal function in the model plant Arabidopsis thaliana contribute to the plant microbiome assembly. We characterized a regulatory mechanism of endodermal differentiation driven by the microbiota with profound effects on nutrient homeostasis. Furthermore, we demonstrate that this mechanism is linked to the microbiota's capacity to repress responses to the phytohormone abscisic acid in the root. Our findings establish the endodermis as a regulatory hub coordinating microbiota assembly and homeostatic mechanisms.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Microbiota/fisiologia , Minerais/metabolismo , Nutrientes/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Arabidopsis/genética , Difusão , Regulação da Expressão Gênica de Plantas , Homeostase , Lipídeos/biossíntese , Raízes de Plantas/genética , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA