RESUMO
We report a case of a long-term surviving patient with EML4/ALK translocated non-small cell adenocarcinoma of the lung in UICC8 stage IVA. During recurrence under continuous crizotinib therapy, a hitherto insufficiently characterized missense mutation in the ALK gene (Arg1181His) was identified through targeted sequencing. The aforementioned EML4/ALK translocation could still be detected in this situation. Employing a 3D reconstruction of the ALK tertiary structure, considering its interaction with various ALK inhibitors at the molecular binding site, our analysis indicated the presence of a mutation associated with crizotinib resistance. To validate the biological relevance of this previously unknown mutation, we carried out an in vitro validation approach in cell culture in addition to the molecular diagnostics accompanied by the molecular tumor board. The tumor scenario was mimicked through retroviral transfection. Our comparative in vitro treatment regimen paired with the clinical trajectory of the patient, corroborated our initial clinical and biochemical suspicions. Our approach demonstrates preclinical, in silico, and clinical evidence of a novel crizotinib resistance mutation in ALK as well as sensitivity toward brigatinib and potentially lorlatinib. In future cases, this procedure represents an important contribution to functional diagnostics in the context of molecular tumor boards.
RESUMO
BACKGROUND: Extracellular vesicles (EVs), including microvesicles, hold promise for the management of bladder urothelial carcinoma (BLCA), particularly because of their utility in identifying therapeutic targets and their diagnostic potential using easily accessible urine samples. Among the transmembrane glycoproteins highly enriched in cancer-derived EVs, tissue factor (TF) and CD147 have been implicated in promoting tumor progression. In this in vitro study, we explored a novel approach to impede cancer cell migration and metastasis by simultaneously targeting these molecules on urothelial cancer-derived EVs. METHODS: Cell culture supernatants from invasive and non-invasive bladder cancer cell lines and urine samples from patients with BLCA were collected. Large, microvesicle-like EVs were isolated using sequential centrifugation and characterized by electron microscopy, nanoparticle tracking analysis, and flow cytometry. The impact of urinary or cell supernatant-derived EVs on cellular phenotypes was evaluated using cell-based assays following combined treatment with a specific CD147 inhibitor alone or in combination with a tissue factor pathway inhibitor (TFPI), an endogenous anticoagulant protein that can be released by low-molecular-weight heparins. RESULTS: We observed that EVs obtained from the urine samples of patients with muscle-invasive BLCA and from the aggressive bladder cancer cell line J82 exhibited higher TF activity and CD147 expression levels than did their non-invasive counterparts. The shedding of GFP-tagged CD147 into isolated vesicles demonstrated that the vesicles originated from plasma cell membranes. EVs originating from invasive cancer cells were found to trigger migration, secretion of matrix metalloproteinases (MMPs), and invasion. The same induction of MMP activity was replicated using EVs obtained from urine samples of patients with invasive BLCA. EVs derived from cancer cell clones overexpressing TF and CD147 were produced in higher quantities and exhibited a higher invasive potential than those from control cancer cells. TFPI interfered with the effect when used in conjunction with the CD147 inhibitor, further suppressing homotypic EV-induced migration, MMP production, and invasion. CONCLUSIONS: Our findings suggest that combining a CD147 inhibitor with low molecular weight heparins to induce TFPI release may be a promising therapeutic approach for urothelial cancer management. This combination can potentially suppress the tumor-promoting actions of cancer-derived microvesicle-like EVs, including collective matrix invasion.
Small particles or vesicles released by cancer cells into their surroundings have the potential to stimulate the spread and growth of cancer cells. In this study, we focused on two specific molecules presented by these cancer cell-derived vesicles that could play a role in promoting the dissemination of cancer cells: a protein related to blood clotting and a protein on the cell surface.We found that large vesicles from bladder cancer cells that have the ability to spread had higher levels of these proteins than vesicles from nonspreading cancer cells. We also found that the former could make cancer cells move about more, produce more of a substance that helps cancer cells spread, and invade other tissues.To counteract the cancer-promoting actions of these vesicles, we examined the impact of combining a naturally occurring anticlotting protein that can be released by medications derived from heparin with an inhibitor targeting the cancer cell surface protein. We found that this combination stopped the vesicles from helping cancer cells move about more, produce more of the spreading substance, and invade other tissues.This approach of simultaneously targeting the two protein molecules present on cancer cell-derived vesicles might be a new way to treat bladder cancer.
Assuntos
Basigina , Carcinoma de Células de Transição , Vesículas Extracelulares , Lipoproteínas , Neoplasias da Bexiga Urinária , Humanos , Carcinoma de Células de Transição/tratamento farmacológico , Linhagem Celular Tumoral , Vesículas Extracelulares/efeitos dos fármacos , Lipoproteínas/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Basigina/antagonistas & inibidoresRESUMO
Activating mutations in FMS-like tyrosine kinase receptor-3 (FLT3) and Nucleophosmin-1 (NPM1) are most frequent alterations in acute myeloid leukemia (AML), and are often coincidental. The mutational status of NPM1 has strong prognostic relevance to patients with point mutations of the FLT3 tyrosine kinase domain (TKD), but the biological mechanism underlying this effect remains unclear. In the present study, we investigated the effect of the coincidence of NPM1c and FLT3-TKD. Although expression of FLT3-TKD is not sufficient to induce a disease in mice, coexpression with NPM1c rapidly leads to an aggressive myeloproliferative disease in mice with a latency of 31.5 days. Mechanistically, we could show that FLT3-TKD is able to activate the downstream effector molecule signal transducer and activator of transcription 5 (STAT5) exclusively in the presence of mutated NPM1c. Moreover, NPM1c alters the cellular localization of FLT3-TKD from the cell surface to the endoplasmic reticulum, which might thereby lead to the aberrant STAT5 activation. Importantly, aberrant STAT5 activation occurs not only in primary murine cells but also in patients with AML with combined FLT3-TKD and NPM1c mutations. Thus, our data indicate a new mechanism, how NPM1c mislocalizes FLT3-TKD and changes its signal transduction ability.
Assuntos
Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Proteínas Nucleares/genética , Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Duplicação Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Nucleofosmina , Transporte Proteico , Fator de Transcrição STAT5/metabolismo , Sequências de Repetição em TandemRESUMO
Leukemia represents a diverse group of hematopoietic neoplasms that can be classified into different subtypes based on the molecular aberration in the affected cell population. Identification of these molecular classification is required to identify specific targeted therapeutic approaches for each leukemic subtype. In general, targeted therapy approaches achieve good responses in some leukemia subgroups, however, resistance against these targeted therapies is common. In this review, we summarize molecular drug resistance biomarkers in targeted therapies in BCR::ABL1-driven chronic myeloid leukemia (CML) and JAK2-driven myeloproliferative neoplasms (MPNs). While acquisition of secondary mutations in the BCR::ABL1 kinase domain is the a common mechanism associated with TKI resistance in CML, in JAK2-driven MPNs secondary mutations in JAK2 are rare. Due to high prevalence and lack of specific therapy approaches in MPNs compared to CML, identification of crucial pathways leading to inhibitor persistence in MPN model is utterly important. In this review, we focus on different alternative signaling pathways activated in both, BCR::ABL1-mediated CML and JAK2-mediated MPNs, by combining data from in vitro and in vivo-studies that could be used as potential biomarkers of drug resistance. In a nutshell, some common similarities, especially activation of PDGFR, Ras, PI3K/Akt signaling pathways, have been demonstrated in both leukemias. In addition, induction of the nucleoprotein YBX1 was shown to be involved in TKI-resistant JAK2-mediated MPN, as well as TKI-resistant CML highlighting deubiquitinating enzymes as potential biomarkers of TKI resistance. Taken together, whole exome sequencing of cell-based or patients-derived samples are highly beneficial to define specific resistance markers. Additionally, this might be helpful for the development of novel diagnostic tools, e.g., liquid biopsy, and novel therapeutic agents, which could be used to overcome TKI resistance in molecularly distinct leukemia subtypes.
RESUMO
Tyrosine-protein kinase (janus kinase; JAK)-signal transducer and activator of transcription (STAT) signaling plays a pivotal role in the development of myeloproliferative neoplasms (MPNs). Treatment with the potent JAK1/JAK2-specific inhibitor, ruxolitinib, significantly reduces tumor burden; however, ruxolitinib treatment does not fully eradicate the malignant clone. As the molecular basis for the disease persistence is not well understood, we set out to gain new insights by generating ruxolitinib-resistant cell lines. Surprisingly, these cells harbor a 45 kDa JAK2 variant (FERM-JAK2) consisting of the N-terminal FERM domain directly fused to the C-terminal kinase domain in 80% of sublines resistant to ruxolitinib. At the molecular level, FERM-JAK2 is able to directly bind and activate STAT5 in the absence of cytokine receptors. Furthermore, phosphorylation of activation-loop tyrosines is dispensable for FERM-JAK2-mediated STAT5 activation and cellular transformation, in contrast to JAK2-V617F. As a result, FERM-JAK2 is highly resistant to several ATP-competitive JAK2 inhibitors, whereas it is particularly sensitive to HSP90 inhibition. A murine model of FERM-JAK2 leukemogenesis showed an accelerated MPN phenotype with pronounced splenomegaly. Notably, most current protocols for the monitoring of emerging JAK variants are unable to detect FERM-JAK2, highlighting the urgent need for implementing next-generation sequencing approaches in MPN patients receiving ruxolitinib.
Assuntos
Antineoplásicos , Fator de Transcrição STAT5 , Animais , Humanos , Camundongos , Janus Quinase 2/metabolismo , Janus Quinases/metabolismo , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismoRESUMO
The prognosis of pancreatic ductal adenocarcinoma (PDAC) is exceedingly poor. Although surgical resection is the only curative treatment option, multimodal treatment is of the utmost importance, as only about 20% of tumors are primarily resectable at the time of diagnosis. The choice of chemotherapeutic treatment regimens involving gemcitabine and FOLFIRINOX is currently solely based on the patient's performance status, but, ideally, it should be based on the tumors' individual biology. We established two novel patient-derived primary cell lines from surgical PDAC specimens. LuPanc-1 and LuPanc-2 were derived from a pT3, pN1, G2 and a pT3, pN2, G3 tumor, respectively, and the clinical follow-up was fully annotated. STR-genotyping revealed a unique profile for both cell lines. The population doubling time of LuPanc-2 was substantially longer than that of LuPanc-1 (84 vs. 44 h). Both cell lines exhibited a typical epithelial morphology and expressed moderate levels of CK7 and E-cadherin. LuPanc-1, but not LuPanc-2, co-expressed E-cadherin and vimentin at the single-cell level, suggesting a mixed epithelial-mesenchymal differentiation. LuPanc-1 had a missense mutation (p.R282W) and LuPanc-2 had a frameshift deletion (p.P89X) in TP53. BRCA2 was nonsense-mutated (p.Q780*) and CREBBP was missense-mutated (p.P279R) in LuPanc-1. CDKN2A was missense-mutated (p.H83Y) in LuPanc-2. Notably, only LuPanc-2 harbored a partial or complete deletion of DPC4. LuPanc-1 cells exhibited high basal and transforming growth factor (TGF)-ß1-induced migratory activity in real-time cell migration assays, while LuPanc-2 was refractory. Both LuPanc-1 and LuPanc-2 cells responded to treatment with TGF-ß1 with the activation of SMAD2; however, only LuPanc-1 cells were able to induce TGF-ß1 target genes, which is consistent with the absence of DPC4 in LuPanc-2 cells. Both cell lines were able to form spheres in a semi-solid medium and in cell viability assays, LuPanc-1 cells were more sensitive than LuPanc-2 cells to treatment with gemcitabine and FOLFIRINOX. In summary, both patient-derived cell lines show distinct molecular phenotypes reflecting their individual tumor biology, with a unique clinical annotation of the respective patients. These preclinical ex vivo models can be further explored for potential new treatment strategies and might help in developing personalized (targeted) therapy regimens.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Fator de Crescimento Transformador beta1/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/patologia , Gencitabina , Caderinas/metabolismo , Neoplasias PancreáticasRESUMO
In ischemic tissue, platelets can modulate angiogenesis. The specific factors influencing this function, however, are poorly understood. Here, we characterized the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) expressed on platelets as a potent regulator of ischemia-driven revascularization. We assessed the relevance of the anaphylatoxin receptor C5aR1 on platelets in patients with coronary artery disease as well as those with peripheral artery disease and used genetic mouse models to characterize its significance for ischemia and growth factor-driven revascularization. The presence of C5aR1-expressing platelets was increased in the hindlimb ischemia model. Ischemia-driven angiogenesis was significantly improved in C5aR1-/- mice but not in C5-/- mice, suggesting a specific role of C5aR1. Experiments using the supernatant of C5a-stimulated platelets suggested a paracrine mechanism of angiogenesis inhibition by platelets by means of antiangiogenic CXC chemokine ligand 4 (CXCL4, PF4). Lineage-specific C5aR1 deletion verified that the secretion of CXCL4 depends on C5aR1 ligation on platelets. Using C5aR1-/-CXCL4-/- mice, we observed no additional effect in the revascularization response, underscoring a strong dependence of CXCL4 secretion on the C5a-C5aR1-axis. We identified a novel mechanism for inhibition of neovascularization via platelet C5aR1, which was mediated by the release of antiangiogenic CXCL4.
Assuntos
Anafilatoxinas , Peptídeos e Proteínas de Sinalização Intercelular , Humanos , Camundongos , Animais , Isquemia/etiologia , Receptor da Anafilatoxina C5aRESUMO
The NPM-ALK fusion kinase is expressed in 60% of systemic anaplastic large-cell lymphomas (ALCL). A Nuclear Interaction Partner of ALK (NIPA) was identified as a binding partner of NPM-ALK. To identify the precise role of NIPA for NPM-ALK-driven lymphomagenesis, we investigated various NPM-ALK+ cell lines and mouse models. Nipa deletion in primary mouse embryonic fibroblasts resulted in reduced transformation ability and colony formation upon NPM-ALK expression. Downregulating NIPA in murine NPM-ALK+ Ba/F3 and human ALCL cells decreased their proliferation ability and demonstrated synergistic effects of ALK inhibition and NIPA knockdown. Comprehensive in vivo analyses using short- and long-latency transplantation mouse models with NPM-ALK+ bone marrow (BM) revealed that Nipa deletion inhibited NPM-ALK-induced tumorigenesis with prolonged survival and reduced spleen colonies. To avoid off-target effects, we combined Nipa deletion and NPM-ALK expression exclusively in T cells using a lineage-restricted murine ALCL-like model resembling human disease: control mice died from neoplastic T-cell infiltration, whereas mice transplanted with Lck-CreTG/wtNipaflox/flox NPM-ALK+ BM showed significantly prolonged survival. Immunophenotypic analyses indicated a characteristic ALCL-like phenotype in all recipients but revealed fewer "stem-cell-like" features of Nipa-deficient lymphomas compared to controls. Our results identify NIPA as a crucial player in effective NPM-ALK-driven ALCL-like disease in clinically relevant murine and cell-based models.