Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Synchrotron Radiat ; 26(Pt 2): 393-405, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855248

RESUMO

MXCuBE2 is the second-generation evolution of the MXCuBE beamline control software, initially developed and used at ESRF - the European Synchrotron. MXCuBE2 extends, in an intuitive graphical user interface (GUI), the functionalities and data collection methods available to users while keeping all previously available features and allowing for the straightforward incorporation of ongoing and future developments. MXCuBE2 introduces an extended abstraction layer that allows easy interfacing of any kind of macromolecular crystallography (MX) hardware component, whether this is a diffractometer, sample changer, detector or optical element. MXCuBE2 also works in strong synergy with the ISPyB Laboratory Information Management System, accessing the list of samples available for a particular experimental session and associating, either from instructions contained in ISPyB or from user input via the MXCuBE2 GUI, different data collection types to them. The development of MXCuBE2 forms the core of a fruitful collaboration which brings together several European synchrotrons and a software development factory and, as such, defines a new paradigm for the development of beamline control platforms for the European MX user community.

2.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 1): 76-85, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25615862

RESUMO

Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21.


Assuntos
Espalhamento a Baixo Ângulo , Interface Usuário-Computador , Automação , Gráficos por Computador , Modelos Teóricos , Síncrotrons
3.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 7): 1289-96, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23793155

RESUMO

The ESRF has worked with, and provided services for, the pharmaceutical industry since the construction of its first protein crystallography beamline in the mid-1990s. In more recent times, industrial clients have benefited from a portfolio of beamlines which offer a wide range of functionality and beam characteristics, including tunability, microfocus and micro-aperture. Included in this portfolio is a small-angle X-ray scattering beamline dedicated to the study of biological molecules in solution. The high demands on throughput and efficiency made by the ESRF's industrial clients have been a major driving force in the evolution of the ESRF's macromolecular crystallography resources, which now include remote access, the automation of crystal screening and data collection, and a beamline database allowing sample tracking, experiment reporting and real-time at-a-distance monitoring of experiments. This paper describes the key features of the functionality put in place on the ESRF structural biology beamlines and outlines the major advantages of the interaction of the ESRF with the pharmaceutical industry.


Assuntos
Cristalografia por Raios X , Coleta de Dados , Processamento Eletrônico de Dados , Indústrias , Substâncias Macromoleculares/química , Síncrotrons/instrumentação , Bases de Dados Factuais , Europa (Continente)
4.
J Synchrotron Radiat ; 20(Pt 4): 660-4, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23765312

RESUMO

Small-angle X-ray scattering (SAXS) measurements of proteins in solution are becoming increasingly popular with biochemists and structural biologists owing to the presence of dedicated high-throughput beamlines at synchrotron sources. As part of the ESRF Upgrade program a dedicated instrument for performing SAXS from biological macromolecules in solution (BioSAXS) has been installed at the renovated BM29 location. The optics hutch has been equipped with new optical components of which the two principal elements are a fixed-exit double multilayer monochromator and a 1.1 m-long toroidal mirror. These new dedicated optics give improved beam characteristics (compared with the previous set-up on ID14-3) regarding the energy tunability, flux and focusing at the detector plane leading to reduced parasitic scattering and an extended s-range. User experiments on the beamline have been successfully carried out since June 2012. A description of the new BioSAXS beamline and the set-up characteristics are presented together with examples of obtained data.


Assuntos
Proteínas/química , Espalhamento a Baixo Ângulo , Soluções
5.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 8): 975-84, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22868763

RESUMO

The automation of beam delivery, sample handling and data analysis, together with increasing photon flux, diminishing focal spot size and the appearance of fast-readout detectors on synchrotron beamlines, have changed the way that many macromolecular crystallography experiments are planned and executed. Screening for the best diffracting crystal, or even the best diffracting part of a selected crystal, has been enabled by the development of microfocus beams, precise goniometers and fast-readout detectors that all require rapid feedback from the initial processing of images in order to be effective. All of these advances require the coupling of data feedback to the experimental control system and depend on immediate online data-analysis results during the experiment. To facilitate this, a Data Analysis WorkBench (DAWB) for the flexible creation of complex automated protocols has been developed. Here, example workflows designed and implemented using DAWB are presented for enhanced multi-step crystal characterizations, experiments involving crystal reorientation with kappa goniometers, crystal-burning experiments for empirically determining the radiation sensitivity of a crystal system and the application of mesh scans to find the best location of a crystal to obtain the highest diffraction quality. Beamline users interact with the prepared workflows through a specific brick within the beamline-control GUI MXCuBE.


Assuntos
Cristalografia por Raios X/métodos , Substâncias Macromoleculares/química , Proteínas/química , Automação , Bioquímica/métodos , Biologia Computacional/métodos , Gráficos por Computador , Cristalização , Desenho de Equipamento , Projetos de Pesquisa , Software , Síncrotrons , Interface Usuário-Computador , Fluxo de Trabalho
6.
Bioinformatics ; 27(22): 3186-92, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21949273

RESUMO

MOTIVATION: Individual research groups now analyze thousands of samples per year at synchrotron macromolecular crystallography (MX) resources. The efficient management of experimental data is thus essential if the best possible experiments are to be performed and the best possible data used in downstream processes in structure determination pipelines. Information System for Protein crystallography Beamlines (ISPyB), a Laboratory Information Management System (LIMS) with an underlying data model allowing for the integration of analyses down-stream of the data collection experiment was developed to facilitate such data management. RESULTS: ISPyB is now a multisite, generic LIMS for synchrotron-based MX experiments. Its initial functionality has been enhanced to include improved sample tracking and reporting of experimental protocols, the direct ranking of the diffraction characteristics of individual samples and the archiving of raw data and results from ancillary experiments and post-experiment data processing protocols. This latter feature paves the way for ISPyB to play a central role in future macromolecular structure solution pipelines and validates the application of the approach used in ISPyB to other experimental techniques, such as biological solution Small Angle X-ray Scattering and spectroscopy, which have similar sample tracking and data handling requirements.


Assuntos
Cristalografia por Raios X/métodos , Sistemas de Informação Administrativa , Proteínas/química , Síncrotrons , Cristalografia por Raios X/instrumentação , Coleta de Dados , Substâncias Macromoleculares/química , Difração de Raios X
7.
Structure ; 17(4): 547-58, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19368888

RESUMO

UvrA proteins are key actors in DNA damage repair and play an essential role in prokaryotic nucleotide excision repair (NER), a pathway that is unique in its ability to remove a broad spectrum of DNA lesions. Understanding the DNA binding and damage recognition activities of the UvrA family is a critical component for establishing the molecular basis of this process. Here we report the structure of the class II UvrA2 from Deinococcus radiodurans in two crystal forms. These structures, coupled with mutational analyses and comparison with the crystal structure of class I UvrA from Bacillus stearothermophilus, suggest a previously unsuspected role for the identified insertion domains of UvrAs in both DNA binding and damage recognition. Taken together, the available information suggests a model for how UvrA interacts with DNA and thus sheds new light on the molecular mechanisms underlying the role of UvrA in the early steps of NER.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Dano ao DNA , DNA Bacteriano/metabolismo , Deinococcus/enzimologia , Adenosina Trifosfatases/classificação , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Cristalização , Análise Mutacional de DNA , Reparo do DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dimerização , Geobacillus stearothermophilus/enzimologia , Hidrólise , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína/genética , Homologia de Sequência de Aminoácidos , Temperatura , Fatores de Tempo
8.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 8): 855-64, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20693684

RESUMO

Crystals of biological macromolecules often exhibit considerable inter-crystal and intra-crystal variation in diffraction quality. This requires the evaluation of many samples prior to data collection, a practice that is already widespread in macromolecular crystallography. As structural biologists move towards tackling ever more ambitious projects, new automated methods of sample evaluation will become crucial to the success of many projects, as will the availability of synchrotron-based facilities optimized for high-throughput evaluation of the diffraction characteristics of samples. Here, two examples of the types of advanced sample evaluation that will be required are presented: searching within a sample-containing loop for microcrystals using an X-ray beam of 5 microm diameter and selecting the most ordered regions of relatively large crystals using X-ray beams of 5-50 microm in diameter. A graphical user interface developed to assist with these screening methods is also presented. For the case in which the diffraction quality of a relatively large crystal is probed using a microbeam, the usefulness and implications of mapping diffraction-quality heterogeneity (diffraction cartography) are discussed. The implementation of these techniques in the context of planned upgrades to the ESRF's structural biology beamlines is also presented.


Assuntos
Cristalografia por Raios X/métodos , Animais , Bovinos , Mitocôndrias/enzimologia , ATPases Translocadoras de Prótons/análise , ATPases Translocadoras de Prótons/química , Receptores Adrenérgicos beta/análise , Receptores Adrenérgicos beta/química , Termolisina/análise , Termolisina/química
9.
J Synchrotron Radiat ; 17(5): 700-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20724792

RESUMO

The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1.


Assuntos
Cristalografia por Raios X/métodos , Software , Síncrotrons , Hidrolases de Éster Carboxílico/química , Bases de Dados Factuais , Substâncias Macromoleculares/química , Espectrometria por Raios X , Termolisina/química
10.
Prog Biophys Mol Biol ; 89(2): 124-52, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15910915

RESUMO

The production of three-dimensional crystallographic structural information of macromolecules can now be thought of as a pipeline which is being streamlined at every stage from protein cloning, expression and purification, through crystallisation to data collection and structure solution. Synchrotron X-ray beamlines are a key section of this pipeline as it is at these that the X-ray diffraction data that ultimately leads to the elucidation of macromolecular structures are collected. The burgeoning number of macromolecular crystallography (MX) beamlines available worldwide may be enhanced significantly with the automation of both their operation and of the experiments carried out on them. This paper reviews the current situation and provides a glimpse of how a MX beamline may look in the not too distant future.


Assuntos
Cristalografia por Raios X , Proteínas/química , Software , Conformação Proteica , Análise Espectral/instrumentação , Análise Espectral/métodos , Síncrotrons/instrumentação
11.
Artigo em Inglês | MEDLINE | ID: mdl-16582477

RESUMO

The structure of the manganese superoxide dismutase (Mn-SOD; DR1279) from Deinococcus radiodurans has been determined in two different crystal forms. Both crystal forms are monoclinic with space group P2(1). Form I has unit-cell parameters a = 44.28, b = 83.21, c = 59.52 angstroms, beta = 110.18 degrees and contains a homodimer in the asymmetric unit, with structure refinement (R = 16.8%, R(free) = 23.6%) carried out using data to d(min) = 2.2 angstroms. Form II has unit-cell parameters a = 43.57, b = 87.10, c = 116.42 angstroms, beta = 92.1 degrees and an asymmetric unit containing two Mn-SOD homodimers; structure refinement was effected to a resolution of 2.0 angstroms (R = 17.2%, R(free) = 22.3%). The resulting structures are compared with that of Mn-SOD from Escherichia coli, with which they are shown to be essentially isostructural.


Assuntos
Deinococcus/enzimologia , Superóxido Dismutase/química , Cristalografia por Raios X , Escherichia coli/enzimologia , Modelos Moleculares , Conformação Proteica , Superóxido Dismutase/isolamento & purificação
12.
J Appl Crystallogr ; 46(Pt 3): 804-810, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23682196

RESUMO

The development of automated high-intensity macromolecular crystallography (MX) beamlines at synchrotron facilities has resulted in a remarkable increase in sample throughput. Developments in X-ray detector technology now mean that complete X-ray diffraction datasets can be collected in less than one minute. Such high-speed collection, and the volumes of data that it produces, often make it difficult for even the most experienced users to cope with the deluge. However, the careful reduction of data during experimental sessions is often necessary for the success of a particular project or as an aid in decision making for subsequent experiments. Automated data reduction pipelines provide a fast and reliable alternative to user-initiated processing at the beamline. In order to provide such a pipeline for the MX user community of the European Synchrotron Radiation Facility (ESRF), a system for the rapid automatic processing of MX diffraction data from single and multiple positions on a single or multiple crystals has been developed. Standard integration and data analysis programs have been incorporated into the ESRF data collection, storage and computing environment, with the final results stored and displayed in an intuitive manner in the ISPyB (information system for protein crystallography beamlines) database, from which they are also available for download. In some cases, experimental phase information can be automatically determined from the processed data. Here, the system is described in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA