Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(4): 1043-1057.e15, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32970989

RESUMO

We show that SARS-CoV-2 spike protein interacts with both cellular heparan sulfate and angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain (RBD). Docking studies suggest a heparin/heparan sulfate-binding site adjacent to the ACE2-binding site. Both ACE2 and heparin can bind independently to spike protein in vitro, and a ternary complex can be generated using heparin as a scaffold. Electron micrographs of spike protein suggests that heparin enhances the open conformation of the RBD that binds ACE2. On cells, spike protein binding depends on both heparan sulfate and ACE2. Unfractionated heparin, non-anticoagulant heparin, heparin lyases, and lung heparan sulfate potently block spike protein binding and/or infection by pseudotyped virus and authentic SARS-CoV-2 virus. We suggest a model in which viral attachment and infection involves heparan sulfate-dependent enhancement of binding to ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin presents new therapeutic opportunities.


Assuntos
Betacoronavirus/fisiologia , Heparitina Sulfato/metabolismo , Peptidil Dipeptidase A/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/isolamento & purificação , Sítios de Ligação , COVID-19 , Linhagem Celular , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Heparina/química , Heparina/metabolismo , Heparitina Sulfato/química , Humanos , Rim/metabolismo , Pulmão/metabolismo , Simulação de Dinâmica Molecular , Pandemias , Peptidil Dipeptidase A/química , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
2.
J Biol Chem ; 299(5): 104611, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931394

RESUMO

Adipose tissue plays a crucial role in maintaining metabolic homeostasis by storing lipids and glucose from circulation as intracellular fat. As peripheral tissues like adipose tissue become insulin resistant, decompensation of blood glucose levels occurs causing type 2 diabetes (T2D). Currently, modulating the glycocalyx, a layer of cell-surface glycans, is an underexplored pharmacological treatment strategy to improve glucose homeostasis in T2D patients. Here, we show a novel role for cell-surface heparan sulfate (HS) in establishing glucose uptake capacity and metabolic utilization in differentiated adipocytes. Using a combination of chemical and genetic interventions, we identified that HS modulates this metabolic phenotype by attenuating levels of Wnt signaling during adipogenesis. By engineering, the glycocalyx of pre-adipocytes with exogenous synthetic HS mimetics, we were able to enhance glucose clearance capacity after differentiation through modulation of Wnt ligand availability. These findings establish the cellular glycocalyx as a possible new target for therapeutic intervention in T2D patients by enhancing glucose clearance capacity independent of insulin secretion.


Assuntos
Adipogenia , Diabetes Mellitus Tipo 2 , Humanos , Adipogenia/genética , Glicocálix/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Heparitina Sulfato , Glucose/metabolismo
3.
J Biol Chem ; 298(8): 102159, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35750212

RESUMO

Lysosomal storage diseases result in various developmental and physiological complications, including cachexia. To study the causes for the negative energy balance associated with cachexia, we assessed the impact of sulfamidase deficiency and heparan sulfate storage on energy homeostasis and metabolism in a mouse model of type IIIa mucopolysaccharidosis (MPS IIIa, Sanfilippo A syndrome). At 12-weeks of age, MPS IIIa mice exhibited fasting and postprandial hypertriglyceridemia compared with wildtype mice, with a reduction of white and brown adipose tissues. Partitioning of dietary [3H]triolein showed a marked increase in intestinal uptake and secretion, whereas hepatic production and clearance of triglyceride-rich lipoproteins did not differ from wildtype controls. Uptake of dietary triolein was also elevated in brown adipose tissue (BAT), and notable increases in beige adipose tissue occurred, resulting in hyperthermia, hyperphagia, hyperdipsia, and increased energy expenditure. Furthermore, fasted MPS IIIa mice remained hyperthermic when subjected to low temperature but became cachexic and profoundly hypothermic when treated with a lipolytic inhibitor. We demonstrated that the reliance on increased lipid fueling of BAT was driven by a reduced ability to generate energy from stored lipids within the depot. These alterations arose from impaired autophagosome-lysosome fusion, resulting in increased mitochondria content in beige and BAT. Finally, we show that increased mitochondria content in BAT and postprandial dyslipidemia was partially reversed upon 5-week treatment with recombinant sulfamidase. We hypothesize that increased BAT activity and persistent increases in energy demand in MPS IIIa mice contribute to the negative energy balance observed in patients with MPS IIIa.


Assuntos
Hipertrigliceridemia , Mucopolissacaridose III , Tecido Adiposo Marrom/metabolismo , Animais , Caquexia , Camundongos , Mitofagia , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/terapia , Trioleína
4.
Nat Chem Biol ; 17(6): 684-692, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33846619

RESUMO

Heparan sulfate (HS) proteoglycans bind extracellular proteins that participate in cell signaling, attachment and endocytosis. These interactions depend on the arrangement of sulfated sugars in the HS chains generated by well-characterized biosynthetic enzymes; however, the regulation of these enzymes is largely unknown. We conducted genome-wide CRISPR-Cas9 screens with a small-molecule ligand that binds to HS. Screening of A375 melanoma cells uncovered additional genes and pathways impacting HS formation. The top hit was the epigenetic factor KDM2B, a histone demethylase. KDM2B inactivation suppressed multiple HS sulfotransferases and upregulated the sulfatase SULF1. These changes differentially affected the interaction of HS-binding proteins. KDM2B-deficient cells displayed decreased growth rates, which was rescued by SULF1 inactivation. In addition, KDM2B deficiency altered the expression of many extracellular matrix genes. Thus, KDM2B controls proliferation of A375 cells through the regulation of HS structure and serves as a master regulator of the extracellular matrix.


Assuntos
Proteínas F-Box/antagonistas & inibidores , Estudo de Associação Genômica Ampla , Heparitina Sulfato/metabolismo , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Algoritmos , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Matriz Extracelular/genética , Ensaios de Triagem em Larga Escala , Humanos , Ligação Proteica/genética , RNA-Seq , Sulfotransferases/antagonistas & inibidores
5.
Proc Natl Acad Sci U S A ; 117(17): 9311-9317, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32277030

RESUMO

Heparin is the most widely prescribed biopharmaceutical in production globally. Its potent anticoagulant activity and safety makes it the drug of choice for preventing deep vein thrombosis and pulmonary embolism. In 2008, adulterated material was introduced into the heparin supply chain, resulting in several hundred deaths and demonstrating the need for alternate sources of heparin. Heparin is a fractionated form of heparan sulfate derived from animal sources, predominantly from connective tissue mast cells in pig mucosa. While the enzymes involved in heparin biosynthesis are identical to those for heparan sulfate, the factors regulating these enzymes are not understood. Examination of the promoter regions of all genes involved in heparin/heparan sulfate assembly uncovered a transcription factor-binding motif for ZNF263, a C2H2 zinc finger protein. CRISPR-mediated targeting and siRNA knockdown of ZNF263 in mammalian cell lines and human primary cells led to dramatically increased expression levels of HS3ST1, a key enzyme involved in imparting anticoagulant activity to heparin, and HS3ST3A1, another glucosaminyl 3-O-sulfotransferase expressed in cells. Enhanced 3-O-sulfation increased binding to antithrombin, which enhanced Factor Xa inhibition, and binding of neuropilin-1. Analysis of transcriptomics data showed distinctively low expression of ZNF263 in mast cells compared with other (non-heparin-producing) immune cells. These findings demonstrate a novel regulatory factor in heparan sulfate modification that could further advance the possibility of bioengineering anticoagulant heparin in cultured cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Heparina/metabolismo , Heparitina Sulfato/biossíntese , Animais , Anticoagulantes , Linhagem Celular , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica/genética , Células HeLa , Heparina/biossíntese , Heparina/genética , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Humanos , Mastócitos/metabolismo , Sulfotransferases/metabolismo , Suínos , Fatores de Transcrição
6.
Arterioscler Thromb Vasc Biol ; 41(11): 2730-2739, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34587757

RESUMO

Objective: Species-specific pseudogenization of the CMAH gene during human evolution eliminated common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) biosynthesis from its precursor N-acetylneuraminic acid (Neu5Ac). With metabolic nonhuman Neu5Gc incorporation into endothelia from red meat, the major dietary source, anti-Neu5Gc antibodies appeared. Human-like Ldlr-/-Cmah-/- mice on a high-fat diet supplemented with a Neu5Gc-enriched mucin, to mimic human red meat consumption, suffered increased atherosclerosis if human-like anti-Neu5Gc antibodies were elicited. Approach and Results: We now ask whether interventional Neu5Ac feeding attenuates metabolically incorporated Neu5Gc-mediated inflammatory acceleration of atherogenesis in this Cmah-/-Ldlr-/- model system. Switching to a Neu5Gc-free high-fat diet or adding a 5-fold excess of Collocalia mucoid-derived Neu5Ac in high-fat diet protects against accelerated atherosclerosis. Switching completely from a Neu5Gc-rich to a Neu5Ac-rich diet further reduces severity. Remarkably, feeding Neu5Ac-enriched high-fat diet alone has a substantial intrinsic protective effect against atherosclerosis in Ldlr-/- mice even in the absence of dietary Neu5Gc but only in the human-like Cmah-null background. Conclusions: Interventional Neu5Ac feeding can mitigate or prevent the red meat/Neu5Gc-mediated increased risk for atherosclerosis, and has an intrinsic protective effect, even in the absence of Neu5Gc feeding. These findings suggest that similar interventions should be tried in humans and that Neu5Ac-enriched diets alone should also be investigated further.


Assuntos
Aorta/metabolismo , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Suplementos Nutricionais , Ácido N-Acetilneuramínico/administração & dosagem , Ácidos Neuramínicos/administração & dosagem , Placa Aterosclerótica , Ração Animal , Animais , Anticorpos/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Células Espumosas/metabolismo , Células Espumosas/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/imunologia , Ácidos Neuramínicos/metabolismo , Pan troglodytes , Receptores de LDL/genética , Receptores de LDL/metabolismo , Sialadenite/metabolismo , Sialadenite/patologia , Células THP-1
7.
Proc Natl Acad Sci U S A ; 116(32): 16036-16045, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31332008

RESUMO

Cardiovascular disease (CVD) events due to atherosclerosis cause one-third of worldwide deaths and risk factors include physical inactivity, age, dyslipidemia, hypertension, diabetes, obesity, smoking, and red meat consumption. However, ∼15% of first-time events occur without such factors. In contrast, coronary events are extremely rare even in closely related chimpanzees in captivity, despite human-like CVD-risk-prone blood lipid profiles, hypertension, and mild atherosclerosis. Similarly, red meat-associated enhancement of CVD event risk does not seem to occur in other carnivorous mammals. Thus, heightened CVD risk may be intrinsic to humans, and genetic changes during our evolution need consideration. Humans exhibit a species-specific deficiency of the sialic acid N-glycolylneuraminic acid (Neu5Gc), due to pseudogenization of cytidine monophosphate-N-acetylneuraminic acid (Neu5Ac) hydroxylase (CMAH), which occurred in hominin ancestors ∼2 to 3 Mya. Ldlr-/- mice with human-like Cmah deficiency fed a sialic acids (Sias)-free high-fat diet (HFD) showed ∼1.9-fold increased atherogenesis over Cmah wild-type Ldlr-/- mice, associated with elevated macrophage cytokine expression and enhanced hyperglycemia. Human consumption of Neu5Gc (from red meat) acts as a "xeno-autoantigen" via metabolic incorporation into endogenous glycoconjugates, as interactions with circulating anti-Neu5Gc "xeno-autoantibodies" potentiate chronic inflammation ("xenosialitis"). Cmah-/-Ldlr-/- mice immunized with Neu5Gc-bearing antigens to generate human-like anti-Neu5Gc antibodies suffered a ∼2.4-fold increased atherosclerosis on a Neu5Gc-rich HFD, compared with Neu5Ac-rich or Sias-free HFD. Lesions in Neu5Gc-immunized and Neu5Gc-rich HFD-fed Cmah-/-Ldlr-/- mice were more advanced but unexplained by lipoprotein or glucose changes. Human evolutionary loss of CMAH likely contributes to atherosclerosis predisposition via multiple intrinsic and extrinsic mechanisms, and future studies could consider this more human-like model.


Assuntos
Aterosclerose/enzimologia , Oxigenases de Função Mista/deficiência , Animais , Bovinos , Citocinas/metabolismo , Dieta Hiperlipídica , Feminino , Humanos , Hiperglicemia/patologia , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Oxigenases de Função Mista/metabolismo , Modelos Biológicos , Fenótipo , Receptores de LDL/deficiência , Receptores de LDL/metabolismo , Ácidos Siálicos/metabolismo , Especificidade da Espécie
8.
Eur Heart J ; 41(24): 2275-2284, 2020 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31111151

RESUMO

AIMS: Lipoprotein(a) [Lp(a)] is elevated in 20-30% of people. This study aimed to assess the effect of statins on Lp(a) levels. METHODS AND RESULTS: This subject-level meta-analysis includes 5256 patients (1371 on placebo and 3885 on statin) from six randomized trials, three statin-vs.-placebo trials, and three statin-vs.-statin trials, with pre- and on-treatment (4-104 weeks) Lp(a) levels. Statins included atorvastatin 10 mg/day and 80 mg/day, pravastatin 40 mg/day, rosuvastatin 40 mg/day, and pitavastatin 2 mg/day. Lipoprotein(a) levels were measured with the same validated assay. The primary analysis of Lp(a) is based on the log-transformed data. In the statin-vs.-placebo pooled analysis, the ratio of geometric means [95% confidence interval (CI)] for statin to placebo is 1.11 (1.07-1.14) (P < 0.0001), with ratio >1 indicating a higher increase in Lp(a) from baseline in statin vs. placebo. The mean percent change from baseline ranged from 8.5% to 19.6% in the statin groups and -0.4% to -2.3% in the placebo groups. In the statin-vs.-statin pooled analysis, the ratio of geometric means (95% CI) for atorvastatin to pravastatin is 1.09 (1.05-1.14) (P < 0.0001). The mean percent change from baseline ranged from 11.6% to 20.4% in the pravastatin group and 18.7% to 24.2% in the atorvastatin group. Incubation of HepG2 hepatocytes with atorvastatin showed an increase in expression of LPA mRNA and apolipoprotein(a) protein. CONCLUSION: This meta-analysis reveals that statins significantly increase plasma Lp(a) levels. Elevations of Lp(a) post-statin therapy should be studied for effects on residual cardiovascular risk.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Atorvastatina , Humanos , Lipoproteína(a) , Pravastatina/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Rosuvastatina Cálcica
9.
J Biol Chem ; 294(36): 13292-13303, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31315930

RESUMO

Hepcidin is a liver-derived peptide hormone that controls systemic iron homeostasis. Its expression is regulated by the bone morphogenetic protein 6 (BMP6)/SMAD1/5/8 pathway and by the proinflammatory cytokine interleukin 6 (IL6). Proteoglycans that function as receptors of these signaling proteins in the liver are commonly decorated by heparan sulfate, but the potential role of hepatic heparan sulfate in hepcidin expression and iron homeostasis is unclear. Here, we show that modulation of hepatic heparan sulfate significantly alters hepcidin expression and iron metabolism both in vitro and in vivo Specifically, enzymatic removal of heparan sulfate from primary human hepatocytes, CRISPR/Cas9 manipulation of heparan sulfate biosynthesis in human hepatoma cells, or pharmacological manipulation of heparan sulfate-protein interactions using sodium chlorate or surfen dramatically reduced baseline and BMP6/SMAD1/5/8-dependent hepcidin expression. Moreover inactivation of the heparan sulfate biosynthetic gene N-deacetylase and N-sulfotransferase 1 (Ndst1) in murine hepatocytes (Ndst1f/fAlbCre+) reduced hepatic hepcidin expression and caused a redistribution of systemic iron, leading to iron accumulation in the liver and serum of mice. Manipulation of heparan sulfate had a similar effect on IL6-dependent hepcidin expression in vitro and suppressed IL6-mediated iron redistribution induced by lipopolysaccharide in vivo These results provide compelling evidence that hepatocyte heparan sulfate plays a key role in regulating hepcidin expression and iron homeostasis in mice and in human hepatocytes.


Assuntos
Heparitina Sulfato/metabolismo , Hepatócitos/metabolismo , Hepcidinas/genética , Homeostase , Ferro/metabolismo , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Hepcidinas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos , Regiões Promotoras Genéticas/genética
10.
Arterioscler Thromb Vasc Biol ; 39(10): 2145-2156, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31390883

RESUMO

OBJECTIVE: ApoC-III (apolipoprotein C-III) glycosylation can predict cardiovascular disease risk. Higher abundance of disialylated (apoC-III2) over monosialylated (apoC-III1) glycoforms is associated with lower plasma triglyceride levels. Yet, it remains unclear whether apoC-III glycosylation impacts TRL (triglyceride-rich lipoprotein) clearance and whether apoC-III antisense therapy (volanesorsen) affects distribution of apoC-III glycoforms. Approach and Results: To measure the abundance of human apoC-III glycoforms in plasma over time, human TRLs were injected into wild-type mice and mice lacking hepatic TRL clearance receptors, namely HSPGs (heparan sulfate proteoglycans) or both LDLR (low-density lipoprotein receptor) and LRP1 (LDLR-related protein 1). ApoC-III was more rapidly cleared in the absence of HSPG (t1/2=25.4 minutes) than in wild-type animals (t1/2=55.1 minutes). In contrast, deficiency of LDLR and LRP1 (t1/2=56.1 minutes) did not affect clearance of apoC-III. After injection, a significant increase in the relative abundance of apoC-III2 was observed in HSPG-deficient mice, whereas the opposite was observed in mice lacking LDLR and LRP1. In patients, abundance of plasma apoC-III glycoforms was assessed after placebo or volanesorsen administration. Volanesorsen treatment correlated with a statistically significant 1.4-fold increase in the relative abundance of apoC-III2 and a 15% decrease in that of apoC-III1. The decrease in relative apoC-III1 abundance was strongly correlated with decreased plasma triglyceride levels in patients. CONCLUSIONS: Our results indicate that HSPGs preferentially clear apoC-III2. In contrast, apoC-III1 is more effectively cleared by LDLR/LRP1. Clinically, the increase in the apoC-III2/apoC-III1 ratio on antisense lowering of apoC-III might reflect faster clearance of apoC-III1 because this metabolic shift associates with improved triglyceride levels.


Assuntos
Apolipoproteína C-III/sangue , Hipertrigliceridemia/tratamento farmacológico , Lipoproteínas HDL3/metabolismo , Oligonucleotídeos/administração & dosagem , Receptores de LDL/metabolismo , Animais , Apolipoproteína C-III/efeitos dos fármacos , Modelos Animais de Doenças , Glicosilação/efeitos dos fármacos , Humanos , Hipertrigliceridemia/sangue , Masculino , Camundongos , Terapia de Alvo Molecular/métodos , Receptores de LDL/efeitos dos fármacos , Valores de Referência
11.
J Lipid Res ; 60(8): 1379-1395, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31092690

RESUMO

Hypertriglyceridemia results from accumulation of triglyceride (TG)-rich lipoproteins (TRLs) in the circulation and is associated with increased CVD risk. ApoC-III is an apolipoprotein on TRLs and a prominent negative regulator of TG catabolism. We recently established that in vivo apoC-III predominantly inhibits LDL receptor-mediated and LDL receptor-related protein 1-mediated hepatic TRL clearance and that apoC-III-enriched TRLs are preferentially cleared by syndecan-1 (SDC1). In this study, we determined the impact of apoE, a common ligand for all three receptors, on apoC-III metabolism using apoC-III antisense oligonucleotide (ASO) treatment in mice lacking apoE and functional SDC1 (Apoe-/-Ndst1f/fAlb-Cre+). ApoC-III ASO treatment significantly reduced plasma TG levels in Apoe-/-Ndst1f/fAlb-Cre+ mice without reducing hepatic VLDL production or improving hepatic TRL clearance. Further analysis revealed that apoC-III ASO treatment lowered plasma TGs in Apoe-/-Ndst1f/fAlb-Cre+ mice, which was associated with increased LPL activity in white adipose tissue in the fed state. Finally, clinical data confirmed that ASO-mediated lowering of APOC-III via volanesorsen can reduce plasma TG levels independent of the APOE isoform genotype. Our data indicate that apoE determines the metabolic impact of apoC-III as we establish that apoE is essential to mediate inhibition of TRL clearance by apoC-III and that, in the absence of functional apoE, apoC-III inhibits tissue LPL activity.


Assuntos
Apolipoproteína C-III/metabolismo , Apolipoproteínas E/deficiência , Lipase Lipoproteica/metabolismo , Triglicerídeos/sangue , Animais , Apolipoproteína C-III/genética , Lipase Lipoproteica/genética , Camundongos , Camundongos Knockout para ApoE , Receptores de LDL/genética , Receptores de LDL/metabolismo
12.
Glycobiology ; 29(8): 582-592, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31094413

RESUMO

Binding and uptake of triglyceride-rich lipoproteins (TRLs) in mice depend on heparan sulfate and the hepatic proteoglycan, syndecan-1 (SDC1). Alteration of glucosamine N-sulfation by deletion of glucosamine N-deacetylase-N-sulfotransferase 1 (Ndst1) and 2-O-sulfation of uronic acids by deletion of uronyl 2-O-sulfotransferase (Hs2st) led to diminished lipoprotein metabolism, whereas inactivation of glucosaminyl 6-O-sulfotransferase 1 (Hs6st1), which encodes one of the three 6-O-sulfotransferases, had little effect on lipoprotein binding. However, other studies have suggested that 6-O-sulfation may be important for TRL binding and uptake. In order to explain these discrepant findings, we used CRISPR/Cas9 gene editing to create a library of mutants in the human hepatoma cell line, Hep3B. Inactivation of EXT1 encoding the heparan sulfate copolymerase, NDST1 and HS2ST dramatically reduced binding of TRLs. Inactivation of HS6ST1 had no effect, but deletion of HS6ST2 reduced TRL binding. Compounding mutations in HS6ST1 and HS6ST2 did not exacerbate this effect indicating that HS6ST2 is the dominant 6-O-sulfotransferase and that binding of TRLs indeed depends on 6-O-sulfation of glucosamine residues. Uptake studies showed that TRL internalization was also affected in 6-O-sulfation deficient cells. Interestingly, genetic deletion of SDC1 only marginally impacted binding of TRLs but reduced TRL uptake to the same extent as treating the cells with heparin lyases. These findings confirm that SDC1 is the dominant endocytic proteoglycan receptor for TRLs in human Hep3B cells and that binding and uptake of TRLs depend on SDC1 and N- and 2-O-sulfation as well as 6-O-sulfation of heparan sulfate chains catalyzed by HS6ST2.


Assuntos
Lipoproteínas/metabolismo , Mutação com Perda de Função , N-Acetilglucosaminiltransferases/metabolismo , Sulfotransferases/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Células Cultivadas , Hepatócitos/metabolismo , Humanos , Lipoproteínas/química , N-Acetilglucosaminiltransferases/genética , Ligação Proteica , Sulfotransferases/genética , Sindecana-1/genética , Sindecana-1/metabolismo , Triglicerídeos/química , Triglicerídeos/metabolismo
13.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29237845

RESUMO

Human cytomegalovirus (HCMV) is the top viral cause of birth defects worldwide, and current therapies have high toxicity. We previously reported that the mTOR-independent autophagy-inducing disaccharide trehalose inhibits HCMV replication in multiple cell types. Here, we examine the mechanism of inhibition and introduce the autophagy inducer SMER28 as an additional inhibitor of HCMV acting through a different mechanism. We find that trehalose induces vacuolation and acidification of vacuoles and that debris, including debris with an appearance consistent with that of abnormal virions, is present in multivesicular bodies. Trehalose treatment increased the levels of Rab7, a protein required for lysosomal biogenesis and fusion, and slightly decreased the levels of Rab11, which is associated with recycling endosomes. We also present evidence that trehalose can promote autophagy without altering cellular glucose uptake. We show that SMER28 inhibits HCMV at the level of early protein production and interferes with viral genome replication in a cell type-dependent fashion. Finally, we show that SMER28 treatment does not cause the vacuolation, acidification, or redistribution of Rab7 associated with trehalose treatment and shows only a modest and cell type-dependent effect on autophagy. We propose a model in which the reciprocal effects on Rab7 and Rab11 induced by trehalose contribute to the redirection of enveloped virions from the plasma membrane to acidified compartments and subsequent degradation, and SMER28 treatment results in decreased expression levels of early and late proteins, reducing the number of virions produced without the widespread vacuolation characteristic of trehalose treatment.IMPORTANCE There is a need for less toxic HCMV antiviral drugs, and modulation of autophagy to control viral infection is a new strategy that takes advantage of virus dependence on autophagy inhibition. The present study extends our previous work on trehalose by showing a possible mechanism of action and introduces another autophagy-inducing compound, SMER28, that is effective against HCMV in several cell types. The mechanism by which trehalose induces autophagy is currently unknown, although our data show that trehalose does not inhibit cellular glucose uptake in cells relevant for HCMV replication but instead alters virion degradation by promoting acidic vacuolization. The comparison of our cell types and those used by others highlights the cell type-dependent nature of studying autophagy.


Assuntos
Compostos Alílicos/farmacologia , Antivirais/farmacologia , Autofagia/efeitos dos fármacos , Infecções por Citomegalovirus/tratamento farmacológico , Citomegalovirus/fisiologia , Quinazolinas/farmacologia , Trealose/farmacologia , Replicação Viral/efeitos dos fármacos , Autofagia/genética , Linhagem Celular , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Humanos , Replicação Viral/fisiologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
14.
Bioconjug Chem ; 30(3): 833-840, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30668905

RESUMO

Heparan sulfate glycosaminoglycans (HS GAGs) attached to proteoglycans harbor high affinity binding sites for various growth factors (GFs) and direct their organization and activity across the cell-matrix interface. Here, we describe a mild and efficient method for generating HS-protein conjugates. The two-step process utilizes a "copper-free click" coupling between differentially sulfated heparinoids primed at their reducing end with an azide handle and a bovine serum albumin protein modified with complementary cyclooctyne functionality. When adsorbed on tissue culture substrates, the glycoconjugates served as extracellular matrix proteoglycan models with the ability to sequester FGF2 and influence mesenchymal stem cell proliferation based on the structure of their HS GAG component.


Assuntos
Matriz Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/química , Heparinoides/química , Células-Tronco/metabolismo , Animais , Glicosaminoglicanos/química
16.
Arterioscler Thromb Vasc Biol ; 38(10): 2327-2337, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30354205

RESUMO

Objective- Dyslipidemia is one of the key factors behind coronary heart disease. Blood and lymphatic vessels play pivotal roles in both lipoprotein metabolism and development of atherosclerotic plaques. Recent studies have linked members of VEGF (vascular endothelial growth factor) family to lipid metabolism, but the function of VEGF-D has remained unexplored. Here, we investigated how the deletion of VEGF-D affects lipid and lipoprotein metabolism in atherogenic LDLR-/- ApoB100/100 mice. Approach and Results- Deletion of VEGF-D (VEGF-D-/-LDLR-/-ApoB100/100) led to markedly elevated plasma cholesterol and triglyceride levels without an increase in atherogenesis. Size distribution and hepatic lipid uptake studies confirmed a delayed clearance of large chylomicron remnant particles that cannot easily penetrate through the vascular endothelium. Mechanistically, the inhibition of VEGF-D signaling significantly decreased the hepatic expression of SDC1 (syndecan 1), which is one of the main receptors for chylomicron remnant uptake when LDLR is absent. Immunohistochemical staining confirmed reduced expression of SDC1 in the sinusoidal surface of hepatocytes in VEGF-D deficient mice. Furthermore, hepatic RNA-sequencing revealed that VEGF-D is also an important regulator of genes related to lipid metabolism and inflammation. The lack of VEGF-D signaling via VEGFR3 (VEGF receptor 3) led to lowered expression of genes regulating triglyceride and cholesterol production, as well as downregulation of peroxisomal ß-oxidation pathway. Conclusions- These results demonstrate that VEGF-D, a powerful lymphangiogenic and angiogenic growth factor, is also a major regulator of chylomicron metabolism in mice.


Assuntos
Remanescentes de Quilomícrons/metabolismo , Hiperlipidemias/metabolismo , Fígado/metabolismo , Fator D de Crescimento do Endotélio Vascular/metabolismo , Animais , Apolipoproteína B-100 , Apolipoproteínas B/deficiência , Apolipoproteínas B/genética , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/sangue , Remanescentes de Quilomícrons/sangue , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hiperlipidemias/sangue , Hiperlipidemias/genética , Absorção Intestinal , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/deficiência , Receptores de LDL/genética , Índice de Gravidade de Doença , Sindecana-1/metabolismo , Triglicerídeos/sangue , Fator D de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Curr Opin Lipidol ; 29(3): 171-179, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29547399

RESUMO

PURPOSE OF REVIEW: Apolipoprotein (apo) C-III is a key player in triglyceride-rich lipoprotein metabolism and strongly associated with elevated plasma triglyceride levels. Several new studies added important insights on apoC-III and its physiological function confirming its promise as a valid therapeutic target. RECENT FINDINGS: APOC3 is expressed in liver and intestine and regulates triglyceride-rich lipoprotein (TRL) catabolism and anabolism. The transcriptional regulation in both organs requires different regulatory elements. Clinical and preclinical studies established that apoC-III raises plasma triglyceride levels predominantly by inhibiting hepatic TRL clearance. Mechanistic insights into missense variants indicate accelerated renal clearance of apoC-III variants resulting in enhanced TRL catabolism. In contrast, an APOC3 gain-of-function variant enhances de novo lipogenesis and hepatic TRL production. Multiple studies confirmed the correlation between increased apoC-III levels and cardiovascular disease. This has opened up new therapeutic avenues allowing targeting of specific apoC-III properties in triglyceride metabolism. SUMMARY: Novel in vivo models and APOC3 missense variants revealed unique mechanisms by which apoC-III inhibits TRL catabolism. Clinical trials with Volanesorsen, an APOC3 antisense oligonucleotide, report very promising lipid-lowering outcomes. However, future studies will need to address if acute apoC-III lowering will have the same clinical benefits as a life-long reduction.


Assuntos
Apolipoproteína C-III/biossíntese , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Triglicerídeos/sangue , Animais , Apolipoproteína C-III/antagonistas & inibidores , Humanos , Oligonucleotídeos/uso terapêutico
18.
J Lipid Res ; 59(5): 854-863, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29559522

RESUMO

Apolipoprotein A-I binding protein (AIBP) has been shown to augment cholesterol efflux from endothelial cells and macrophages. In zebrafish and mice, AIBP-mediated regulation of cholesterol levels in the plasma membrane of endothelial cells controls angiogenesis. The goal of this work was to evaluate metabolic changes and atherosclerosis in AIBP loss-of-function and gain-of-function animal studies. Here, we show that Apoa1bp-/-Ldlr-/- mice fed a high-cholesterol, high-fat diet had exacerbated weight gain, liver steatosis, glucose intolerance, hypercholesterolemia, hypertriglyceridemia, and larger atherosclerotic lesions compared with Ldlr-/- mice. Feeding Apoa1bp-/-Ldlr-/- mice a high-cholesterol, normal-fat diet did not result in significant differences in lipid levels or size of atherosclerotic lesions from Ldlr-/- mice. Conversely, adeno-associated virus-mediated overexpression of AIBP reduced hyperlipidemia and atherosclerosis in high-cholesterol, high-fat diet-fed Ldlr-/- mice. Injections of recombinant AIBP reduced aortic inflammation in Ldlr-/- mice fed a short high-cholesterol, high-fat diet. Conditional overexpression of AIBP in zebrafish also reduced diet-induced vascular lipid accumulation. In experiments with isolated macrophages, AIBP facilitated cholesterol efflux to HDL, reduced lipid rafts content, and inhibited inflammatory responses to lipopolysaccharide.jlr Our data demonstrate that AIBP confers protection against diet-induced metabolic abnormalities and atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Proteínas de Transporte/metabolismo , Síndrome Metabólica/metabolismo , Fosfoproteínas/metabolismo , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/deficiência , Racemases e Epimerases , Receptores de LDL/deficiência , Receptores de LDL/metabolismo
19.
Arterioscler Thromb Vasc Biol ; 37(3): 580-588, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28062489

RESUMO

OBJECTIVE: Lipoprotein(a) [Lp(a)] levels are genetically determined by hepatocyte apolipoprotein(a) synthesis, but catabolic pathways also influence circulating levels. APOE genotypes have different affinities for the low-density lipoprotein (LDL) receptor and LDL-related protein-1, with ε2 having the weakest binding to LDL receptor at <2% relative to ε3 and ε4. APPROACH AND RESULTS: APOE genotypes (ε2/ε2, ε2/ε3, ε2/ε4, ε3/ε3, ε3/ε4, and ε4/ε4), Lp(a) mass, directly measured Lp(a)-cholesterol levels, and a variety of apoB-related lipoproteins were measured in 431 239 patients. The prevalence of APOE traits were ε2: 7.35%, ε3: 77.56%, and ε4: 15.09%. Mean (SD) Lp(a) levels were 65% higher in ε4/ε4 compared with ε2/ε2 genotypes and increased significantly according to APOE genotype: ε2/ε2: 23.4 (29.2), ε2/ε3: 31.3 (38.0), ε2/ε4: 32.8 (38.5), ε3/ε3: 33.2 (39.1), ε3/ε4: 35.5 (41.6), and ε4/ε4: 38.5 (44.1) mg/dL (P<0.0001). LDL-cholesterol, apoB, Lp(a)-cholesterol, LDL-cholesterol corrected for Lp(a)-cholesterol content, LDL-particle number, and small, dense LDL also had similar patterns. Patients with LDL-cholesterol ≥250 mg/dL, who are more likely to have LDL receptor mutations and reduced affinity for apoB, had higher Lp(a) levels across all apoE isoforms, but particularly in patients with ε2 alleles, compared with LDL <250 mg/dL. The lowest Lp(a) mass levels were present in patients with ε2 isoforms and lowest LDL-cholesterol. CONCLUSIONS: APOE genotypes strongly influence Lp(a) and apoB-related lipoprotein levels. This suggests that differences in affinity of apoE proteins for lipoprotein clearance receptors may affect Lp(a) catabolism, suggesting a competition between Lp(a) and apoE protein for similar receptors.


Assuntos
Apolipoproteínas E/genética , Lipoproteína(a)/sangue , Adulto , Idoso , Apolipoproteína B-100/sangue , Biomarcadores/sangue , LDL-Colesterol/sangue , Feminino , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
20.
Mol Ther ; 25(12): 2743-2752, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28958576

RESUMO

Iduronidase (IDUA)-deficient mice accumulate glycosaminoglycans in cells and tissues and exhibit many of the same neuropathological symptoms of patients suffering from Mucopolysaccharidosis I. Intravenous enzyme-replacement therapy for Mucopolysaccharidosis I ameliorates glycosaminoglycan storage and many of the somatic aspects of the disease but fails to treat neurological symptoms due to poor transport across the blood-brain barrier. In this study, we examined the delivery of IDUA conjugated to guanidinoneomycin (GNeo), a molecular transporter. GNeo-IDUA and IDUA injected intravenously resulted in reduced hepatic glycosaminoglycan accumulation but had no effect in the brain due to fast clearance from the circulation. In contrast, intranasally administered GNeo-IDUA entered the brain rapidly. Repetitive intranasal treatment with GNeo-IDUA reduced glycosaminoglycan storage, lysosome size and number, and neurodegenerative astrogliosis in the olfactory bulb and primary somatosensory cortex, whereas IDUA was less effective. The enhanced efficacy of GNeo-IDUA was not the result of increased nose-to-brain delivery or enzyme stability, but rather due to more efficient uptake into neurons and astrocytes. GNeo conjugation also enhanced glycosaminoglycan clearance by intranasally delivered sulfamidase to the brain of sulfamidase-deficient mice, a model of Mucopolysaccharidosis IIIA. These findings suggest the general utility of the guanidinoglycoside-based delivery system for restoring missing lysosomal enzymes in the brain.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Iduronidase/administração & dosagem , Neomicina/administração & dosagem , Administração Intranasal , Animais , Biomarcadores , Encéfalo/patologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Terapia de Reposição de Enzimas , Gliose/metabolismo , Gliose/patologia , Glicosaminoglicanos/metabolismo , Humanos , Hidrolases , Fígado/efeitos dos fármacos , Fígado/metabolismo , Lisossomos , Camundongos , Camundongos Knockout , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA