Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1012135, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593120

RESUMO

The rebound competent viral reservoir (RCVR)-virus that persists during antiretroviral treatment (ART) and can reignite systemic infection when treatment is stopped-is the primary barrier to eradicating HIV. We used time to initiation of ART during primary infection of rhesus macaques (RMs) after intravenous challenge with barcoded SIVmac239 as a means to elucidate the dynamics of RCVR establishment in groups of RMs by creating a multi-log range of pre-ART viral loads and then assessed viral time-to-rebound and reactivation rates resulting from the discontinuation of ART after one year. RMs started on ART on days 3, 4, 5, 6, 7, 9 or 12 post-infection showed a nearly 10-fold difference in pre-ART viral measurements for successive ART-initiation timepoints. Only 1 of 8 RMs initiating ART on days 3 and 4 rebounded after ART interruption despite measurable pre-ART plasma viremia. Rebounding plasma from the 1 rebounding RM contained only a single barcode lineage detected at day 50 post-ART. All RMs starting ART on days 5 and 6 rebounded between 14- and 50-days post-ART with 1-2 rebounding variants each. RMs starting ART on days 7, 9, and 12 had similar time-to-measurable plasma rebound kinetics despite multiple log differences in pre-ART plasma viral load (pVL), with all RMs rebounding between 7- and 16-days post-ART with 3-28 rebounding lineages. Calculated reactivation rates per pre-ART pVL were highest for RMs starting ART on days 5, 6, and 7 after which the rate of accumulation of the RCVR markedly decreased for RMs treated on days 9 and 12, consistent with multiphasic establishment and near saturation of the RCVR within 2 weeks post infection. Taken together, these data highlight the heterogeneity of the RCVR between RMs, the stochastic establishment of the very early RCVR, and the saturability of the RCVR prior to peak viral infection.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/fisiologia , Macaca mulatta , Replicação Viral , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologia , Infecções por HIV/tratamento farmacológico , Carga Viral
2.
J Infect Dis ; 225(5): 856-861, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34562096

RESUMO

We tested the combination of a broadly neutralizing HIV antibody with the latency reversal agent vorinostat (VOR). Eight participants received 2 month-long cycles of VRC07-523LS with VOR. Low-level viremia, resting CD4+ T-cell-associated HIV RNA (rca-RNA) was measured, and intact proviral DNA assay (IPDA) and quantitative viral outgrowth assay (QVOA) were performed at baseline and posttreatment. In 3 participants, IPDA and QVOA declines were accompanied by significant declines of rca-RNA. However, no IPDA or QVOA declines clearly exceeded assay variance or natural decay. Increased resistance to VRC07-523LS was not observed. This combination therapy did not reduce viremia or the HIV reservoir. Clinical Trials Registration. NCT03803605.


Assuntos
Infecções por HIV , HIV-1 , Anticorpos Amplamente Neutralizantes , Linfócitos T CD4-Positivos , HIV-1/genética , Humanos , Viremia/tratamento farmacológico , Latência Viral , Vorinostat/uso terapêutico
3.
Nature ; 522(7557): 487-91, 2015 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-25855300

RESUMO

HIV-1 immunotherapy with a combination of first generation monoclonal antibodies was largely ineffective in pre-clinical and clinical settings and was therefore abandoned. However, recently developed single-cell-based antibody cloning methods have uncovered a new generation of far more potent broadly neutralizing antibodies to HIV-1 (refs 4, 5). These antibodies can prevent infection and suppress viraemia in humanized mice and nonhuman primates, but their potential for human HIV-1 immunotherapy has not been evaluated. Here we report the results of a first-in-man dose escalation phase 1 clinical trial of 3BNC117, a potent human CD4 binding site antibody, in uninfected and HIV-1-infected individuals. 3BNC117 infusion was well tolerated and demonstrated favourable pharmacokinetics. A single 30 mg kg(-1) infusion of 3BNC117 reduced the viral load in HIV-1-infected individuals by 0.8-2.5 log10 and viraemia remained significantly reduced for 28 days. Emergence of resistant viral strains was variable, with some individuals remaining sensitive to 3BNC117 for a period of 28 days. We conclude that, as a single agent, 3BNC117 is safe and effective in reducing HIV-1 viraemia, and that immunotherapy should be explored as a new modality for HIV-1 prevention, therapy and cure.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/terapia , HIV-1/imunologia , Carga Viral/imunologia , Viremia/terapia , Adulto , Sequência de Aminoácidos , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/efeitos adversos , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Sítios de Ligação , Anticorpos Amplamente Neutralizantes , Antígenos CD4/metabolismo , Estudos de Casos e Controles , Evolução Molecular , Feminino , Anticorpos Anti-HIV/administração & dosagem , Anticorpos Anti-HIV/efeitos adversos , Anticorpos Anti-HIV/farmacologia , Anticorpos Anti-HIV/uso terapêutico , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/química , HIV-1/efeitos dos fármacos , Humanos , Imunização Passiva/métodos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fatores de Tempo , Carga Viral/efeitos dos fármacos , Viremia/imunologia , Viremia/virologia , Adulto Jovem
4.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32747359

RESUMO

In HIV-1, development of resistance to AZT (3'-azido-3'-deoxythymidine) is mediated by the acquisition of thymidine analogue resistance mutations (TAMs) (i.e., M41L, D67N, K70R, L210W, T215F/Y, and K219E/Q) in the viral reverse transcriptase (RT). Clinically relevant combinations of TAMs, such as M41L/T215Y or D67N/K70R/T215F/K219Q, enhance the ATP-mediated excision of AZT monophosphate (AZTMP) from the 3' end of the primer, allowing DNA synthesis to continue. Additionally, during HIV-1 maturation, the Gag polyprotein is cleaved to release a mature nucleocapsid protein (NCp7) and two intermediate precursors (NCp9 and NCp15). NC proteins interact with the viral genome and facilitate the reverse transcription process. Using wild-type and TAM-containing RTs, we showed that both NCp9 and NCp15 inhibited ATP-mediated rescue of AZTMP-terminated primers annealed to RNA templates but not DNA templates, while NCp7 had no effect on rescue activity. RNase H inactivation by introducing the active-site mutation E478Q led to the loss of the inhibitory effect shown by NCp9. NCp15 had a stimulatory effect on the RT's RNase H activity not observed with NCp7 and NCp9. However, analysis of RNase H cleavage patterns revealed that in the presence of NCp9, RNA/DNA complexes containing duplexes of 12 bp had reduced stability in comparison with those obtained in the absence of NC or with NCp7 or NCp15. These effects are expected to have a strong influence on the inhibitory action of NCp9 and NCp15 by affecting the efficiency of RNA-dependent DNA polymerization after unblocking DNA primers terminated with AZTMP and other nucleotide analogues.


Assuntos
Fármacos Anti-HIV , Zidovudina , Trifosfato de Adenosina , Fármacos Anti-HIV/farmacologia , Transcriptase Reversa do HIV/genética , Mutação , Precursores de Proteínas , Inibidores da Transcriptase Reversa/farmacologia , Zidovudina/farmacologia
5.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597776

RESUMO

The major obstacle to more-definitive treatment for HIV infection is the early establishment of virus that persists despite long-term combination antiretroviral therapy (cART) and can cause recrudescent viremia if cART is interrupted. Previous studies of HIV DNA that persists despite cART indicated that only a small fraction of persistent viral sequences was intact. Experimental simian immunodeficiency virus (SIV) infections of nonhuman primates (NHPs) are essential models for testing interventions designed to reduce the viral reservoir. We studied the viral genomic integrity of virus that persists during cART under conditions typical of many NHP reservoir studies, specifically with cART started within 1 year postinfection and continued for at least 9 months. The fraction of persistent DNA in SIV-infected NHPs starting cART during acute or chronic infection was assessed with a multiamplicon, real-time PCR assay designed to analyze locations that are regularly spaced across the viral genome to maximize coverage (collectively referred to as "tile assay") combined with near-full-length (nFL) single-genome sequencing. The tile assay is used to rapidly screen for major deletions, with nFL sequence analysis used to identify additional potentially inactivating mutations. Peripheral blood mononuclear cells (PBMC) from animals started on cART within 1 month of infection, sampled at least 9 months after cART initiation, contained at least 80% intact genomes, whereas those from animals started on cART 1 year postinfection and treated for 1 year contained intact genomes only 47% of the time. The most common defect identified was large deletions, with the remaining defects caused by APOBEC-mediated mutations, frameshift mutations, and inactivating point mutations. Overall, this approach can be used to assess the intactness of persistent viral DNA in NHPs.IMPORTANCE Molecularly defining the viral reservoir that persists despite antiretroviral therapy and that can lead to rebound viremia if antiviral therapy is removed is critical for testing interventions aimed at reducing this reservoir. In HIV infection in humans with delayed treatment initiation and extended treatment duration, persistent viral DNA has been shown to be dominated by nonfunctional genomes. Using multiple real-time PCR assays across the genome combined with near-full-genome sequencing, we defined SIV genetic integrity after 9 to 18 months of combination antiretroviral therapy in rhesus macaques starting therapy within 1 year of infection. In the animals starting therapy within a month of infection, the vast majority of persistent DNA was intact and presumptively functional. Starting therapy within 1 year increased the nonintact fraction of persistent viral DNA. The approach described here allows rapid screening of viral intactness and is a valuable tool for assessing the efficacy of novel reservoir-reducing interventions.


Assuntos
Antirretrovirais/farmacologia , Genoma Viral/efeitos dos fármacos , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/genética , Viremia/tratamento farmacológico , Animais , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , DNA Viral/antagonistas & inibidores , DNA Viral/genética , DNA Viral/metabolismo , Emtricitabina/farmacologia , Genômica/métodos , Macaca mulatta , Mutação , RNA Viral/antagonistas & inibidores , RNA Viral/genética , RNA Viral/metabolismo , Raltegravir Potássico/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Tenofovir/farmacologia , Carga Viral/efeitos dos fármacos , Viremia/imunologia , Replicação Viral/efeitos dos fármacos , Sequenciamento Completo do Genoma
6.
Nucleic Acids Res ; 46(18): 9699-9710, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29986076

RESUMO

During HIV-1 assembly and budding, Gag protein, in particular the C-terminal domain containing the nucleocapsid domain (NCd), p1 and p6, is the site of numerous interactions with viral and cellular factors. Most in vitro studies of Gag have used constructs lacking p1 and p6. Here, using NMR spectroscopy, we show that the p1-p6 region of Gag (NCp15) is largely disordered, but interacts transiently with the NCd. These interactions modify the dynamic properties of the NCd. Indeed, using isothermal titration calorimetry (ITC), we have measured a higher entropic penalty to RNA-binding for the NCd precursor, NCp15, than for the mature form, NCp7, which lacks p1 and p6. We propose that during assembly and budding of virions, concomitant with Gag oligomerization, transient interactions between NCd and p1-p6 become salient and responsible for (i) a higher level of structuration of p6, which favours recruitment of budding partners; and (ii) a higher entropic penalty to RNA-binding at specific sites that favours non-specific binding of NCd at multiple sites on the genomic RNA (gRNA). The contributions of p6 and p1 are sequentially removed via proteolysis during Gag maturation such that the RNA-binding specificity of the mature protein is governed by the properties of NCd.


Assuntos
HIV-1/fisiologia , Nucleocapsídeo/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Vírion/metabolismo , Montagem de Vírus/fisiologia , HIV-1/genética , Humanos , Conformação de Ácido Nucleico , Multimerização Proteica/fisiologia , RNA Viral/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
7.
J Am Chem Soc ; 141(20): 8327-8338, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31042030

RESUMO

For HIV to become infectious, any new virion produced from an infected cell must undergo a maturation process that involves the assembly of viral polyproteins Gag and Gag-Pol at the membrane surface. The self-assembly of these viral proteins drives formation of a new viral particle as well as the activation of HIV protease, which is needed to cleave the polyproteins so that the final core structure of the virus will properly form. Molecules that interfere with HIV maturation will prevent any new virions from infecting additional cells. In this manuscript, we characterize the unique mechanism by which a mercaptobenzamide thioester small molecule (SAMT-247) interferes with HIV maturation via a series of selective acetylations at highly conserved cysteine and lysine residues in Gag and Gag-Pol polyproteins. The results provide the first insights into how acetylation can be utilized to perturb the process of HIV maturation and reveal a new strategy to limit the infectivity of HIV.


Assuntos
Fármacos Anti-HIV/farmacologia , Benzamidas/farmacologia , HIV/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Montagem de Vírus/efeitos dos fármacos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/efeitos dos fármacos , Acetilação , Sequência de Aminoácidos , Linhagem Celular , Cisteína/química , Proteínas de Fusão gag-pol/química , Proteínas de Fusão gag-pol/efeitos dos fármacos , Humanos , Lisina/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química
8.
PLoS Pathog ; 12(5): e1005646, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27186986

RESUMO

Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10-5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10-21 and1 × 10-11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic variation is substantially lower than that from mutations during error-prone replication.


Assuntos
Citosina Desaminase/metabolismo , Variação Genética/genética , HIV-1/genética , Recombinação Genética/genética , Desaminases APOBEC , Citidina Desaminase , Células HEK293 , Humanos , Mutação , Taxa de Mutação , Reação em Cadeia da Polimerase
9.
Proc Natl Acad Sci U S A ; 112(44): 13555-60, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483503

RESUMO

Retroviral nucleocapsid (NC) proteins are nucleic acid chaperones that play a key role in the viral life cycle. During reverse transcription, HIV-1 NC facilitates the rearrangement of nucleic acid secondary structure, allowing the transactivation response (TAR) RNA hairpin to be transiently destabilized and annealed to a cDNA hairpin. It is not clear how NC specifically destabilizes TAR RNA but does not strongly destabilize the resulting annealed RNA-DNA hybrid structure, which must be formed for reverse transcription to continue. By combining single-molecule optical tweezers measurements with a quantitative mfold-based model, we characterize the equilibrium TAR stability and unfolding barrier for TAR RNA. Experiments show that adding NC lowers the transition state barrier height while also dramatically shifting the barrier location. Incorporating TAR destabilization by NC into the mfold-based model reveals that a subset of preferential protein binding sites is responsible for the observed changes in the unfolding landscape, including the unusual shift in the transition state. We measure the destabilization induced at these NC binding sites and find that NC preferentially targets TAR RNA by binding to specific sequence contexts that are not present on the final annealed RNA-DNA hybrid structure. Thus, specific binding alters the entire RNA unfolding landscape, resulting in the dramatic destabilization of this specific structure that is required for reverse transcription.


Assuntos
Repetição Terminal Longa de HIV , Proteínas do Nucleocapsídeo/química , Dobramento de RNA , RNA Viral/química , Algoritmos , Sequência de Bases , Sítios de Ligação/genética , HIV-1/química , HIV-1/genética , HIV-1/metabolismo , Cinética , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Ligação Proteica , Estabilidade de RNA , RNA Viral/genética , RNA Viral/metabolismo , Transcrição Reversa , Termodinâmica
11.
Retrovirology ; 13(1): 89, 2016 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-28034301

RESUMO

BACKGROUND: The nucleocapsid (NC) domain of HIV-1 Gag is responsible for specific recognition and packaging of genomic RNA (gRNA) into new viral particles. This occurs through specific interactions between the Gag NC domain and the Psi packaging signal in gRNA. In addition to this critical function, NC proteins are also nucleic acid (NA) chaperone proteins that facilitate NA rearrangements during reverse transcription. Although the interaction with Psi and chaperone activity of HIV-1 NC have been well characterized in vitro, little is known about simian immunodeficiency virus (SIV) NC. Non-human primates are frequently used as a platform to study retroviral infection in vivo; thus, it is important to understand underlying mechanistic differences between HIV-1 and SIV NC. RESULTS: Here, we characterize SIV NC chaperone activity for the first time. Only modest differences are observed in the ability of SIV NC to facilitate reactions that mimic the minus-strand annealing and transfer steps of reverse transcription relative to HIV-1 NC, with the latter displaying slightly higher strand transfer and annealing rates. Quantitative single molecule DNA stretching studies and dynamic light scattering experiments reveal that these differences are due to significantly increased DNA compaction energy and higher aggregation capability of HIV-1 NC relative to the SIV protein. Using salt-titration binding assays, we find that both proteins are strikingly similar in their ability to specifically interact with HIV-1 Psi RNA. In contrast, they do not demonstrate specific binding to an RNA derived from the putative SIV packaging signal. CONCLUSIONS: Based on these studies, we conclude that (1) HIV-1 NC is a slightly more efficient NA chaperone protein than SIV NC, (2) mechanistic differences between the NA interactions of highly similar retroviral NC proteins are revealed by quantitative single molecule DNA stretching, and (3) SIV NC demonstrates cross-species recognition of the HIV-1 Psi RNA packaging signal.


Assuntos
Genoma Viral , HIV-1/química , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/genética , Vírus da Imunodeficiência Símia/química , HIV-1/genética , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/fisiologia , Conformação de Ácido Nucleico , Proteínas do Nucleocapsídeo/genética , Ligação Proteica , Transcrição Reversa , Vírus da Imunodeficiência Símia/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
12.
J Virol ; 89(19): 9765-80, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26178982

RESUMO

UNLABELLED: During virion maturation, HIV-1 capsid protein assembles into a conical core containing the viral ribonucleoprotein (vRNP) complex, thought to be composed mainly of the viral RNA and nucleocapsid protein (NC). After infection, the viral RNA is reverse transcribed into double-stranded DNA, which is then incorporated into host chromosomes by integrase (IN) catalysis. Certain IN mutations (class II) and antiviral drugs (allosteric IN inhibitors [ALLINIs]) adversely affect maturation, resulting in virions that contain "eccentric condensates," electron-dense aggregates located outside seemingly empty capsids. Here we demonstrate that in addition to this mislocalization of electron density, a class II IN mutation and ALLINIs each increase the fraction of virions with malformed capsids (from ∼ 12% to ∼ 53%). Eccentric condensates have a high NC content, as demonstrated by "tomo-bubblegram" imaging, a novel labeling technique that exploits the susceptibility of NC to radiation damage. Tomo-bubblegrams also localized NC inside wild-type cores and lining the spherical Gag shell in immature virions. We conclude that eccentric condensates represent nonpackaged vRNPs and that either genetic or pharmacological inhibition of IN can impair vRNP incorporation into mature cores. Supplying IN in trans as part of a Vpr-IN fusion protein partially restored the formation of conical cores with internal electron density and the infectivity of a class II IN deletion mutant virus. Moreover, the ability of ALLINIs to induce eccentric condensate formation required both IN and viral RNA. Based on these observations, we propose a role for IN in initiating core morphogenesis and vRNP incorporation into the mature core during HIV-1 maturation. IMPORTANCE: Maturation, a process essential for HIV-1 infectivity, involves core assembly, whereby the viral ribonucleoprotein (vRNP, composed of vRNA and nucleocapsid protein [NC]) is packaged into a conical capsid. Allosteric integrase inhibitors (ALLINIs) affect multiple viral processes. We have characterized ALLINIs and integrase mutants that have the same phenotype. First, by comparing the effects of ALLINIs on several steps of the viral cycle, we show that inhibition of maturation accounts for compound potency. Second, by using cryoelectron tomography, we find that ALLINIs impair conical capsid assembly. Third, by developing tomo-bubblegram imaging, which specifically labels NC protein, we find that ALLINIs block vRNP packaging; instead, vRNPs form "eccentric condensates" outside the core. Fourth, malformed cores, typical of integrase-deleted virus, are partially replaced by conical cores when integrase is supplied in trans. Fifth, vRNA is necessary for ALLINI-induced eccentric condensate formation. These observations suggest that integrase is involved in capsid morphogenesis and vRNP packaging.


Assuntos
Integrase de HIV/metabolismo , HIV-1/fisiologia , Proteínas do Nucleocapsídeo/metabolismo , Vírion/fisiologia , Montagem de Vírus/fisiologia , Microscopia Crioeletrônica , Células HEK293 , HIV-1/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase , Vírion/metabolismo
13.
PLoS Comput Biol ; 11(5): e1004230, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25992893

RESUMO

HIV and related primate lentiviruses possess single-stranded RNA genomes. Multiple regions of these genomes participate in critical steps in the viral replication cycle, and the functions of many RNA elements are dependent on the formation of defined structures. The structures of these elements are still not fully understood, and additional functional elements likely exist that have not been identified. In this work, we compared three full-length HIV-related viral genomes: HIV-1NL4-3, SIVcpz, and SIVmac (the latter two strains are progenitors for all HIV-1 and HIV-2 strains, respectively). Model-free RNA structure comparisons were performed using whole-genome structure information experimentally derived from nucleotide-resolution SHAPE reactivities. Consensus secondary structures were constructed for strongly correlated regions by taking into account both SHAPE probing structural data and nucleotide covariation information from structure-based alignments. In these consensus models, all known functional RNA elements were recapitulated with high accuracy. In addition, we identified multiple previously unannotated structural elements in the HIV-1 genome likely to function in translation, splicing and other replication cycle processes; these are compelling targets for future functional analyses. The structure-informed alignment strategy developed here will be broadly useful for efficient RNA motif discovery.


Assuntos
HIV-1/genética , RNA Viral/química , RNA Viral/genética , Animais , Sequência de Bases , Sequência Conservada , Estruturas Genéticas , Genoma Viral , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Alinhamento de Sequência/métodos , Relação Estrutura-Atividade
14.
Nucleic Acids Res ; 42(4): 2525-37, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24293648

RESUMO

The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein contains 15 basic residues located throughout its 55-amino acid sequence, as well as one aromatic residue in each of its two CCHC-type zinc finger motifs. NC facilitates nucleic acid (NA) rearrangements via its chaperone activity, but the structural basis for this activity and its consequences in vivo are not completely understood. Here, we investigate the role played by basic residues in the N-terminal domain, the N-terminal zinc finger and the linker region between the two zinc fingers. We use in vitro ensemble and single-molecule DNA stretching experiments to measure the characteristics of wild-type and mutant HIV-1 NC proteins, and correlate these results with cell-based HIV-1 replication assays. All of the cationic residue mutations lead to NA interaction defects, as well as reduced HIV-1 infectivity, and these effects are most pronounced on neutralizing all five N-terminal cationic residues. HIV-1 infectivity in cells is correlated most strongly with NC's NA annealing capabilities as well as its ability to intercalate the DNA duplex. Although NC's aromatic residues participate directly in DNA intercalation, our findings suggest that specific basic residues enhance these interactions, resulting in optimal NA chaperone activity.


Assuntos
DNA/química , HIV-1/fisiologia , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Linhagem Celular , DNA/metabolismo , Mutação , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
15.
Nucleic Acids Res ; 42(11): 7145-59, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24813443

RESUMO

During human immunodeficiency virus type 1 (HIV-1) maturation, three different forms of nucleocapsid (NC) protein-NCp15 (p9 + p6), NCp9 (p7 + SP2) and NCp7-appear successively. A mutant virus expressing NCp15 shows greatly reduced infectivity. Mature NCp7 is a chaperone protein that facilitates remodeling of nucleic acids (NAs) during reverse transcription. To understand the strict requirement for NCp15 processing, we compared the chaperone function of the three forms of NC. NCp15 anneals tRNA to the primer-binding site at a similar rate as NCp7, whereas NCp9 is the most efficient annealing protein. Assays to measure NA destabilization show a similar trend. Dynamic light scattering studies reveal that NCp15 forms much smaller aggregates relative to those formed by NCp7 and NCp9. Nuclear magnetic resonance studies suggest that the acidic p6 domain of HIV-1 NCp15 folds back and interacts with the basic zinc fingers. Neutralizing the acidic residues in p6 improves the annealing and aggregation activity of NCp15 to the level of NCp9 and increases the protein-NA aggregate size. Slower NCp15 dissociation kinetics is observed by single-molecule DNA stretching, consistent with the formation of electrostatic inter-protein contacts, which likely contribute to the distinct aggregate morphology, irregular HIV-1 core formation and non-infectious virus.


Assuntos
Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , DNA Viral/metabolismo , HIV-1/fisiologia , Humanos , Dados de Sequência Molecular , Precursores de Proteínas/metabolismo , Estrutura Terciária de Proteína , RNA de Transferência/metabolismo , RNA Viral/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química
16.
Retrovirology ; 12: 3, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25614027

RESUMO

BACKGROUND: Human APOBEC3H (A3H) belongs to the A3 family of host restriction factors, which are cytidine deaminases that catalyze conversion of deoxycytidine to deoxyuridine in single-stranded DNA. A3 proteins contain either one (A3A, A3C, A3H) or two (A3B, A3D, A3F, A3G) Zn-binding domains. A3H has seven haplotypes (I-VII) that exhibit diverse biological phenotypes and geographical distribution in the human population. Its single Zn-coordinating deaminase domain belongs to a phylogenetic cluster (Z3) that is different from the Z1- and Z2-type domains in other human A3 proteins. A3H HapII, unlike A3A or A3C, has potent activity against HIV-1. Here, we sought to identify the determinants of A3H HapII deaminase and antiviral activities, using site-directed sequence- and structure-guided mutagenesis together with cell-based, biochemical, and HIV-1 infectivity assays. RESULTS: We have constructed a homology model of A3H HapII, which is similar to the known structures of other A3 proteins. The model revealed a large cluster of basic residues (not present in A3A or A3C) that are likely to be involved in nucleic acid binding. Indeed, RNase A pretreatment of 293T cell lysates expressing A3H was shown to be required for detection of deaminase activity, indicating that interaction with cellular RNAs inhibits A3H catalytic function. Similar observations have been made with A3G. Analysis of A3H deaminase substrate specificity demonstrated that a 5' T adjacent to the catalytic C is preferred. Changing the putative nucleic acid binding residues identified by the model resulted in reduction or abrogation of enzymatic activity, while substituting Z3-specific residues in A3H to the corresponding residues in other A3 proteins did not affect enzyme function. As shown for A3G and A3F, some A3H mutants were defective in catalysis, but retained antiviral activity against HIV-1vif (-) virions. Furthermore, endogenous reverse transcription assays demonstrated that the E56A catalytic mutant inhibits HIV-1 DNA synthesis, although not as efficiently as wild type. CONCLUSIONS: The molecular and biological activities of A3H are more similar to those of the double-domain A3 proteins than to those of A3A or A3C. Importantly, A3H appears to use both deaminase-dependent and -independent mechanisms to target reverse transcription and restrict HIV-1 replication.


Assuntos
Aminoidrolases/genética , Aminoidrolases/metabolismo , HIV-1/imunologia , HIV-1/fisiologia , Replicação Viral , Sequência de Aminoácidos , Análise Mutacional de DNA , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica
17.
J Virol ; 88(11): 6061-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24623442

RESUMO

UNLABELLED: Retroviral virions initially assemble in an immature form that differs from that of the mature infectious particle. The RNA genomes in both immature and infectious particles are dimers, and interactions between the RNA dimer and the viral Gag protein ensure selective packaging into nascent immature virions. We used high-sensitivity selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) to obtain nucleotide-resolution structural information from scarce, femtomole quantities of Moloney murine leukemia virus (MuLV) RNA inside authentic virions and from viral RNA extracted from immature (protease-minus) virions. Our secondary structure model of the dimerization and packaging domain indicated that a stable intermolecular duplex known as PAL2, previously shown to be present in mature infectious MuLV particles, was sequestered in an alternate stem-loop structure inside immature virions. The intermediate state corresponded closely to a late-folding intermediate that we detected in time-resolved studies of the free MuLV RNA, suggesting that the immature RNA structure reflects trapping of the intermediate folding state by interactions in the immature virion. We propose models for the RNA-protein interactions that trap the RNA in the immature state and for the conformational rearrangement that occurs during maturation of virion particles. IMPORTANCE: The structure of the RNA genome in mature retroviruses has been studied extensively, whereas very little was known about the RNA structure in immature virions. The immature RNA structure is important because it is the form initially selected for packaging in new virions and may have other roles. This lack of information was due to the difficulty of isolating sufficient viral RNA for study. In this work, we apply a high-sensitivity and nucleotide-resolution approach to examine the structure of the dimerization and packaging domain of Moloney murine leukemia virus. We find that the genomic RNA is packaged in a high-energy state, suggesting that interactions within the virion hold or capture the RNA before it reaches its most stable state. This new structural information makes it possible to propose models for the conformational changes in the RNA genome that accompany retroviral maturation.


Assuntos
Genoma Viral/genética , Modelos Moleculares , Vírus da Leucemia Murina de Moloney/genética , RNA Viral/genética , Vírion/genética , Acilação , Primers do DNA/genética , Dimerização , Eletroforese Capilar , Vírion/crescimento & desenvolvimento
18.
J Virol ; 88(2): 1271-80, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24227839

RESUMO

Retroviral RNA encapsidation involves a recognition event between genomic RNA (gRNA) and one or more domains in Gag. In HIV-1, the nucleocapsid (NC) domain is involved in gRNA packaging and displays robust nucleic acid (NA) binding and chaperone functions. In comparison, NC of human T-cell leukemia virus type 1 (HTLV-1), a deltaretrovirus, displays weaker NA binding and chaperone activity. Mutation of conserved charged residues in the deltaretrovirus bovine leukemia virus (BLV) matrix (MA) and NC domains affects virus replication and gRNA packaging efficiency. Based on these observations, we hypothesized that the MA domain may generally contribute to NA binding and genome encapsidation in deltaretroviruses. Here, we examined the interaction between HTLV-2 and HIV-1 MA proteins and various NAs in vitro. HTLV-2 MA displays higher NA binding affinity and better chaperone activity than HIV-1 MA. HTLV-2 MA also binds NAs with higher affinity than HTLV-2 NC and displays more robust chaperone function. Mutation of two basic residues in HTLV-2 MA α-helix II, previously implicated in BLV gRNA packaging, reduces NA binding affinity. HTLV-2 MA binds with high affinity and specificity to RNA derived from the putative packaging signal of HTLV-2 relative to nonspecific NA. Furthermore, an HIV-1 MA triple mutant designed to mimic the basic character of HTLV-2 MA α-helix II dramatically improves binding affinity and chaperone activity of HIV-1 MA in vitro and restores RNA packaging to a ΔNC HIV-1 variant in cell-based assays. Taken together, these results are consistent with a role for deltaretrovirus MA proteins in viral RNA packaging.


Assuntos
Antígenos HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Infecções por HTLV-II/virologia , Vírus Linfotrópico T Tipo 2 Humano/fisiologia , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/metabolismo , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Bovinos , Antígenos HIV/química , Antígenos HIV/genética , HIV-1/química , HIV-1/genética , Vírus Linfotrópico T Tipo 2 Humano/química , Vírus Linfotrópico T Tipo 2 Humano/genética , Humanos , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Ligação Proteica , Estrutura Secundária de Proteína , RNA Viral/genética , Alinhamento de Sequência , Especificidade da Espécie , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
19.
PLoS Pathog ; 9(4): e1003294, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593004

RESUMO

RNA secondary structure plays a central role in the replication and metabolism of all RNA viruses, including retroviruses like HIV-1. However, structures with known function represent only a fraction of the secondary structure reported for HIV-1(NL4-3). One tool to assess the importance of RNA structures is to examine their conservation over evolutionary time. To this end, we used SHAPE to model the secondary structure of a second primate lentiviral genome, SIVmac239, which shares only 50% sequence identity at the nucleotide level with HIV-1NL4-3. Only about half of the paired nucleotides are paired in both genomic RNAs and, across the genome, just 71 base pairs form with the same pairing partner in both genomes. On average the RNA secondary structure is thus evolving at a much faster rate than the sequence. Structure at the Gag-Pro-Pol frameshift site is maintained but in a significantly altered form, while the impact of selection for maintaining a protein binding interaction can be seen in the conservation of pairing partners in the small RRE stems where Rev binds. Structures that are conserved between SIVmac239 and HIV-1(NL4-3) also occur at the 5' polyadenylation sequence, in the plus strand primer sites, PPT and cPPT, and in the stem-loop structure that includes the first splice acceptor site. The two genomes are adenosine-rich and cytidine-poor. The structured regions are enriched in guanosines, while unpaired regions are enriched in adenosines, and functionaly important structures have stronger base pairing than nonconserved structures. We conclude that much of the secondary structure is the result of fortuitous pairing in a metastable state that reforms during sequence evolution. However, secondary structure elements with important function are stabilized by higher guanosine content that allows regions of structure to persist as sequence evolution proceeds, and, within the confines of selective pressure, allows structures to evolve.


Assuntos
Genoma Viral , HIV-1/genética , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , Vírus da Imunodeficiência Símia/genética , Animais , Composição de Bases , Sequência de Bases , Sítios de Ligação , Evolução Molecular , Mutação da Fase de Leitura , Genes env/genética , Humanos , Camundongos , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
20.
PLoS Pathog ; 9(3): e1003249, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555259

RESUMO

How retroviruses regulate the amount of RNA genome packaged into each virion has remained a long-standing question. Our previous study showed that most HIV-1 particles contain two copies of viral RNA, indicating that the number of genomes packaged is tightly regulated. In this report, we examine the mechanism that controls the number of RNA genomes encapsidated into HIV-1 particles. We hypothesize that HIV-1 regulates genome packaging by either the mass or copy number of the viral RNA. These two distinct mechanisms predict different outcomes when the genome size deviates significantly from that of wild type. Regulation by RNA mass would result in multiple copies of a small genome or one copy of a large genome being packaged, whereas regulation by copy number would result in two copies of a genome being packaged independent of size. To distinguish between these two hypotheses, we examined the packaging of viral RNA that was larger (≈17 kb) or smaller (≈3 kb) than that of wild-type HIV-1 (≈9 kb) and found that most particles packaged two copies of the viral genome regardless of whether they were 17 kb or 3 kb. Therefore, HIV-1 regulates RNA genome encapsidation not by the mass of RNA but by packaging two copies of RNA. To further explore the mechanism that governs this regulation, we examined the packaging of viral RNAs containing two packaging signals that can form intermolecular dimers or intramolecular dimers (self-dimers) and found that one self-dimer is packaged. Therefore, HIV-1 recognizes one dimeric RNA instead of two copies of RNA. Our findings reveal that dimeric RNA recognition is the key mechanism that regulates HIV-1 genome encapsidation and provide insights into a critical step in the generation of infectious viruses.


Assuntos
Genoma Viral , HIV-1/genética , RNA Viral/genética , Vírion/genética , Montagem de Vírus/fisiologia , Variações do Número de Cópias de DNA , Dimerização , Humanos , Rim/citologia , RNA Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA