Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Arch Toxicol ; 95(9): 3133-3136, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34363510

RESUMO

The EU chemicals strategy for sustainability (CSS) asserts that both human health and the environment are presently threatened and that further regulation is necessary. In a recent Guest Editorial, members of the German competent authority for risk assessment, the BfR, raised concerns about the scientific justification for this strategy. The complexity and interdependence of the networks of regulation of chemical substances have ensured that public health and wellbeing in the EU have continuously improved. A continuous process of improvement in consumer protection is clearly desirable but any initiative directed towards this objective must be based on scientific knowledge. It must not confound risk with other factors in determining policy. This conclusion is fully supported in the present Commentary including the request to improve both, data collection and the time-consuming and bureaucratic procedures that delay the publication of regulations.


Assuntos
Saúde Pública/legislação & jurisprudência , Medição de Risco/legislação & jurisprudência , União Europeia , Substâncias Perigosas/toxicidade , Política de Saúde/legislação & jurisprudência , Humanos
2.
Arch Toxicol ; 94(7): 2549-2557, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32514609

RESUMO

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Assuntos
Exposição Dietética/efeitos adversos , Disruptores Endócrinos/efeitos adversos , Sistema Endócrino/efeitos dos fármacos , Compostos Fitoquímicos/efeitos adversos , Testes de Toxicidade , Animais , Disruptores Endócrinos/síntese química , Sistema Endócrino/metabolismo , Sistema Endócrino/fisiopatologia , Humanos , Ligantes , Medição de Risco
3.
J Toxicol Environ Health A ; 83(13-14): 485-494, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32552445

RESUMO

Theoretically, both synthetic endocrine-disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine-disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower than S-EDCs. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea, and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Assuntos
Disruptores Endócrinos/síntese química , Disruptores Endócrinos/toxicidade , Exposição Ambiental/análise , Disruptores Endócrinos/metabolismo , Sistema Endócrino/efeitos dos fármacos , Sistema Endócrino/fisiologia , Exposição Ambiental/estatística & dados numéricos , Retroalimentação Fisiológica/efeitos dos fármacos , Hormônios/metabolismo , Humanos , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Medição de Risco , Testes de Toxicidade/normas
4.
Regul Toxicol Pharmacol ; 69(3): 279-80, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24882687

RESUMO

Reproducibility remains a mirage for many biomedical studies because inherent experimental uncertainties generate idiosyncratic outcomes. The authentication and error rates of primary empirical data are often elusive, while multifactorial confounders beset experimental setups. Substantive methodological remedies are difficult to conceive, signifying that many biomedical studies yield more or less plausible results, depending on the attending uncertainties. Real life applications of those results remain problematic, with important exceptions for counterfactual field validations of strong experimental signals, notably for some vaccines and drugs, and for certain safety and occupational measures. It is argued that industrial, commercial and public policies and regulations could not ethically rely on unreliable biomedical results; rather, they should be rationally grounded on transparent cost-benefit tradeoffs.


Assuntos
Pesquisa Biomédica , Reprodutibilidade dos Testes
5.
Toxicol Pathol ; 41(5): 805-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23211741

RESUMO

Long term bioassays in animals cannot reliably forecast unknown potential but distant human risks, and especially cancer risks. The genetic, anatomic, physiologic, behavioral and environmental adaptations of rats and mice - the officially prescribed animals - are not relevant to humans. Even bioassay results for the two prescribed species are not mutually predictive. The dearth of human relevance is augmented by arbitrary and incongruous default assumptions, also officially prescribed for the conduct and interpretation of bioassays in rats and mice. Moreover, and contrary to publicized perceptions, bioassay results are freely evaded in the markup of regulations, with the imposition of arbitrary safety factors and the guided opinions of ad hoc appointed advisory committees. Regardless of bioassay results, actual regulations of unknowable distant risks end up allowing those minimum exposures that are still compatible with uses deemed necessary or useful for the common welfare. Thus it would seem sensible to do away with very costly long-term bioassays irrelevant to humans and whose results are anyway bypassed, and to focus regulations on short-term effects relevant to humans, and on transparent cost and benefit considerations toward minimizing useful exposures.


Assuntos
Testes de Carcinogenicidade/métodos , Testes de Carcinogenicidade/normas , Animais , Bioensaio/métodos , Bioensaio/normas , Camundongos , Ratos , Medição de Risco
6.
Regul Toxicol Pharmacol ; 66(1): 163-5, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23314067

RESUMO

The regulation of health and environmental hazards is coercive to the point of imposing substantial fines and even detention to transgressors. In free societies, those regulations have ethical standing if grounded on the scientific evidence of physical measurements relevant to what is being protected including humans, or on transparent use and benefit tradeoffs. These requirements are commonly observed for risks and hazards that are present and measurable, and they sustain much of current regulations that remain uncontroversial. By contrast, most supposable distant risks that cannot be measured are currently regulated on the basis of arbitrary and very costly assumptions of evidence, simulated as if relevant, objective and scientific. Such illusory assumptions are enforced to impart an ersatz moral authority to regulations, which in reality end up as the opaque condensations of political and bureaucratic pressures. The common outcome of such pressures is regulations that whimsically sanction the most minimal exposures that still allow practical applications. Such official misrepresentations of evidence are intolerable and should be removed, because only relevant and factually measured evidence provides moral standing to regulations. When that evidence is not possible, precautionary minimal exposures compatible with necessary applications should be ethically defined by reasoned and transparent use and benefits tradeoffs.


Assuntos
Exposição Ambiental/legislação & jurisprudência , Ética , Substâncias Perigosas/toxicidade , Animais , Exposição Ambiental/efeitos adversos , Regulamentação Governamental , Humanos , Política
8.
Chem Biol Interact ; 326: 109099, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370863

RESUMO

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Assuntos
Disruptores Endócrinos/efeitos adversos , Sistema Endócrino/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/efeitos adversos , Animais , Humanos
9.
Toxicol In Vitro ; 67: 104861, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32360643

RESUMO

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Assuntos
Disruptores Endócrinos/toxicidade , Exposição Ambiental , Poluentes Ambientais/toxicidade , Hormônios/metabolismo , Sistema Endócrino , Humanos , Receptores de Superfície Celular/metabolismo , Medição de Risco
10.
Food Chem Toxicol ; 142: 111349, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32360905

RESUMO

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Assuntos
Exposição Dietética , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Humanos , Medição de Risco
11.
Environ Toxicol Pharmacol ; 78: 103396, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32391796

RESUMO

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Assuntos
Produtos Biológicos/toxicidade , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Sistema Endócrino/efeitos dos fármacos , Exposição Ambiental , Hormônios , Humanos , Receptores de Esteroides/metabolismo , Medição de Risco
18.
Toxicol Sci ; 146(1): 11-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26026993

RESUMO

The present debate on chemicals with Hormonal activity, often termed 'endocrine disruptors', is highly controversial and includes challenges of the present paradigms used in toxicology and in hazard identification and risk characterization. In our opinion, chemicals with hormonal activity can be subjected to the well-evaluated health risk characterization approach used for many years including adverse outcome pathways. Many of the points arguing for a specific approach for risk characterization of chemicals with hormonal activity are based on highly speculative conclusions. These conclusions are not well supported when evaluating the available information.


Assuntos
Disruptores Endócrinos/farmacologia , Sistema Endócrino/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Humanos , Testes de Toxicidade
19.
Ann Epidemiol ; 12(2): 73-8, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11880213

RESUMO

Epidemiologists in the United States have been intrigued for almost two decades by the prospect of guidelines of epidemiologic practice: an issue partially raised by a perceived need for criteria that may distinguish advocacy positions from more conservative interpretations in epidemiology. Preliminary efforts have considered questions of subject protection, of study structure and documentation, and of professional etiquette. Deeper ethical interests have been coalescing around the need for candor and truth in the interpretation of uncertain epidemiologic findings--a need construed to be central to trustworthiness, and whose consideration would bring about a reappraisal of other aspects of epidemiologic practice. Openness about uncertainties would likely develop naturally into a search for ways to measure the relative strength of epidemiologic warnings, as an aid to ranking public health priorities. Principles aimed at resolving ethical, operational, and priority questions become interdependent elements of professional guidelines for epidemiology.


Assuntos
Epidemiologia/normas , Guias de Prática Clínica como Assunto/normas , Humanos , Prática Profissional/normas , Ciência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA