Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Dis ; 107(12): 3958-3966, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37430481

RESUMO

The beet leafhopper Circulifer tenellus is an important pest of agricultural crops in the United States, where it transmits beet curly top virus, beet leafhopper-transmitted virescence agent phytoplasma, and Spiroplasma citri to numerous crops, affecting yield and quality. Each of these pathogens have been linked to serious disease outbreaks within Washington State in the past century. To mitigate the risk of disease, growers target the beet leafhopper in their insect pest management programs. Knowledge of pathogen prevalence in beet leafhopper populations could help growers make better management decisions, but timely diagnostics is required. Four new assays were developed for the rapid detection of the beet leafhopper-associated pathogens. These include two assays that detect Beet leafhopper transmitted virescence agent (a PCR and a real-time PCR SYBR green assay), a duplex PCR assay that simultaneously detects beet curly top virus and Spiroplasma citri, and a multiplex real-time PCR assay for the simultaneous detection of all three pathogens. The screening of dilution series generated from plant total nucleic acid extracts with these new assays typically led to detection at levels 10- to 100-fold more sensitive than the conventional PCR assays currently used. These new tools will allow the rapid detection of beet leafhopper-associated pathogens in both plant and insect specimens and will have the potential to be used in diagnostic laboratories seeking to disseminate fast and accurate results to growers for implementation in their insect pest monitoring programs.


Assuntos
Beta vulgaris , Hemípteros , Phytoplasma , Spiroplasma citri , Animais , Phytoplasma/genética , Doenças das Plantas , Insetos , Reação em Cadeia da Polimerase em Tempo Real , Produtos Agrícolas
2.
J Econ Entomol ; 116(5): 1876-1884, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37583309

RESUMO

Plant pathogens that are transmitted by insect vectors cause considerable damage to crops when pests or pathogens are not detected early in the season and populations are not controlled. Knowledge of pathogen prevalence in insect pest populations can aid growers in their insect pest management decisions but requires the timely dissemination of results. This process requires that specimen capture, identification, nucleic acid extraction, and molecular detection of a pathogen(s) occur alongside a platform for sharing results. The potato psyllid (Bactericera cockerelli, Sulc; Hemiptera: Triozidae) and beet leafhopper (Circulifer tenellus, Baker; Hemiptera: Cicadellidae) transmit pathogens to potato and other vegetable or seed crops each season in the northwestern United States. While the potato psyllid has been tested for pathogen occurrence for the past decade, testing of the beet leafhopper is a new endeavor and substantially increases the specimen number that must be tested by our laboratories each season. To aid in the rapid processing of individual insect specimens, we optimized and validated a new high-throughput 96-well plate nucleic acid extraction method for use in place of a standard 1.5-ml single-tube extraction method. Processing efficiency, in terms of total specimens processed over a 2-day period, improved 2.5-fold, and the cost associated with processing a single sample was nearly cut in half with this newly developed plate nucleic acid extraction method. Overall, this method has proven to be an excellent tool for the rapid testing of large numbers of small, individual insect vectors to enable timely dissemination of data on pathogen prevalence to growers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA