Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1094255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36777026

RESUMO

The mutualistic cnidarian-dinoflagellate symbiosis underpins the evolutionary success of stony corals and the persistence of coral reefs. However, a molecular understanding of the signalling events that lead to the successful establishment and maintenance of this symbiosis remains unresolved. For example, the phosphatidylinositol (PI) signalling pathway has been implicated during the establishment of multiple mutualistic and parasitic interactions across the kingdoms of life, yet its role within the cnidarian-dinoflagellate symbiosis remains unexplored. Here, we aimed to confirm the presence and assess the specific enzymatic composition of the PI signalling pathway across cnidaria and dinoflagellates by compiling 21 symbiotic anthozoan (corals and sea anemones) and 28 symbiotic dinoflagellate (Symbiodiniaceae) transcriptomic and genomic datasets and querying genes related to this pathway. Presence or absence of PI-kinase and PI-phosphatase orthologs were also compared between a broad sampling of taxonomically related symbiotic and non-symbiotic species. Across the symbiotic anthozoans analysed, there was a complete and highly conserved PI pathway, analogous to the pathway found in model eukaryotes. The Symbiodiniaceae pathway showed similarities to its sister taxon, the Apicomplexa, with the absence of PI 4-phosphatases. However, conversely to Apicomplexa, there was also an expansion of homologs present in the PI5-phosphatase and PI5-kinase groups, with unique Symbiodiniaceae proteins identified that are unknown from non-symbiotic unicellular organisms. Additionally, we aimed to unravel the putative functionalities of the PI signalling pathway in this symbiosis by analysing phosphoinositide (PIP)-binding proteins. Analysis of phosphoinositide (PIP)-binding proteins showed that, on average, 2.23 and 1.29% of the total assemblies of anthozoan and Symbiodiniaceae, respectively, have the potential to bind to PIPs. Enrichment of Gene Ontology (GO) terms associated with predicted PIP-binding proteins within each taxon revealed a broad range of functions, including compelling links to processes putatively involved in symbiosis regulation. This analysis establishes a baseline for current understanding of the PI pathway across anthozoans and Symbiodiniaceae, and thus a framework to target future research.

2.
Toxicon ; 194: 63-69, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33631138

RESUMO

Despite comprising over half of the biodiversity of living venomous vertebrates, fish venoms are comparatively understudied. Venom from the lesser weever fish (Echiichthys vipera syn. Trachinus vipera) has received only cursory attention despite containing one of the most potent venom toxins (trachinine). Literature records are further complicated by early studies combining the venom with that of the related greater weever (Trachinus draco). The current study used a chicken chorioallantoic membrane assay to investigate venom bioactivity following the application of measured quantities of crude venom to a major bilateral vein at 1 cm distance from the heart. The venom had a dose-dependent effect on survival rate and exhibited dose-dependent cardiotoxic properties at day six of development. Crude E. vipera triggered tachycardia at doses of 37.58 and 44.88 µg/µL and bradycardia at 77.4 µg/µL. The three highest doses (65.73, 77.4 and 151.24 µg/µL) caused significant mortality. These data also suggested intra-specific variation in E. vipera venom potency. Unlike a number of other piscine venoms, E. vipera venom was not haemorrhagic at the concentrations assayed.


Assuntos
Venenos de Peixe , Perciformes , Viperidae , Animais , Venenos de Peixe/toxicidade , Peixes , Peçonhas , Venenos de Víboras/toxicidade
3.
Sci Rep ; 10(1): 20473, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235281

RESUMO

In oligotrophic waters, cnidarian hosts rely on symbiosis with their photosynthetic dinoflagellate partners (family Symbiodiniaceae) to obtain the nutrients they need to grow, reproduce and survive. For this symbiosis to persist, the host must regulate the growth and proliferation of its symbionts. One of the proposed regulatory mechanisms is arrest of the symbiont cell cycle in the G1 phase, though the cellular mechanisms involved remain unknown. Cell-cycle progression in eukaryotes is controlled by the conserved family of cyclin-dependent kinases (CDKs) and their partner cyclins. We identified CDKs and cyclins in different Symbiodiniaceae species and examined their relationship to homologs in other eukaryotes. Cyclin proteins related to eumetazoan cell-cycle-related cyclins A, B, D, G/I and Y, and transcriptional cyclin L, were identified in the Symbiodiniaceae, alongside several alveolate-specific cyclin A/B proteins, and proteins related to protist P/U-type cyclins and apicomplexan cyclins. The largest expansion of Symbiodiniaceae cyclins was in the P/U-type cyclin groups. Proteins related to eumetazoan cell-cycle-related CDKs (CDK1) were identified as well as transcription-related CDKs. The largest expansion of CDK groups was, however, in alveolate-specific groups which comprised 11 distinct CDK groups (CDKA-J) with CDKB being the most widely distributed CDK protein. As a result of its phylogenetic position, conservation across Symbiodiniaceae species, and the presence of the canonical CDK motif, CDKB emerged as a likely candidate for a Saccharomyces cerevisiae Cdc28/Pho85-like homolog in Symbiodiniaceae. Similar to cyclins, two CDK-groups found in Symbiodiniaceae species were solely associated with apicomplexan taxa. A comparison of Breviolum minutum CDK and cyclin gene expression between free-living and symbiotic states showed that several alveolate-specific CDKs and two P/U-type cyclins exhibited altered expression in hospite, suggesting that symbiosis influences the cell cycle of symbionts on a molecular level. These results highlight the divergence of Symbiodiniaceae cell-cycle proteins across species. These results have important implications for host control of the symbiont cell cycle in novel cnidarian-dinoflagellate symbioses.


Assuntos
Proteínas de Ciclo Celular/genética , Cnidários/parasitologia , Biologia Computacional/métodos , Dinoflagellida/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Ciclo Celular/química , Dinoflagellida/classificação , Dinoflagellida/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Filogenia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência , Análise de Sequência de RNA , Especificidade da Espécie , Simbiose
4.
Toxicon X ; 6: 100025, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32550581

RESUMO

In comparison with other animal venoms, fish venoms remain relatively understudied. This is especially true for that of the lesser Echiichthys vipera and greater weever fish Trachinus draco which, apart from the isolation of their unique venom cytolysins, trachinine and dracotoxin, respectively, remain relatively uncharacterised. Envenomation reports mainly include mild symptoms consisting of nociception and inflammation. However, like most fish venoms, if the venom becomes systemic it causes cardiorespiratory and blood pressure changes. Although T. draco venom has not been studied since the 1990's, recent studies on E. vipera venom have discovered novel cytotoxic components on human cancer cells, but due to the scarcity of research on the molecular make-up of the venom, the molecule(s) causing this cytotoxicity remains unknown. This review analyses past studies on E. vipera and T. draco venom, the methods used in the , the venom constituents characterised, the reported symptoms of envenomation and compares these findings with those from other venomous Scorpaeniformes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA