Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Neurosci Res ; 99(10): 2625-2645, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34212416

RESUMO

The homeodomain transcription factors sine oculis homeobox 3 (Six3) and ventral anterior homeobox 1 (Vax1) are required for brain development. Their expression in specific brain areas is maintained in adulthood, where their functions are poorly understood. To identify the roles of Six3 and Vax1 in neurons, we conditionally deleted each gene using Synapsincre , a promoter targeting maturing neurons, and generated Six3syn and Vax1syn mice. Six3syn and Vax1syn females, but not males, had reduced fertility, due to impairment of the luteinizing hormone (LH) surge driving ovulation. In nocturnal rodents, the LH surge requires a precise timing signal from the brain's circadian pacemaker, the suprachiasmatic nucleus (SCN), near the time of activity onset. Indeed, both Six3syn and Vax1syn females had impaired rhythmic SCN output, which was associated with weakened Period 2 molecular clock function in both Six3syn and Vax1syn mice. These impairments were associated with a reduction of the SCN neuropeptide vasoactive intestinal peptide in Vax1syn mice and a modest weakening of SCN timekeeping function in both Six3syn and Vax1syn mice. Changes in SCN function were associated with mistimed peak PER2::LUC expression in the SCN and pituitary in both Six3syn and Vax1syn females. Interestingly, Six3syn ovaries presented reduced sensitivity to LH, causing reduced ovulation during superovulation. In conclusion, we have identified novel roles of the homeodomain transcription factors SIX3 and VAX1 in neurons, where they are required for proper molecular circadian clock function, SCN rhythmic output, and female fertility.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas do Olho/metabolismo , Fertilidade/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Corrida/fisiologia , Núcleo Supraquiasmático/metabolismo , Animais , Proteínas do Olho/genética , Feminino , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/genética , Proteína Homeobox SIX3
2.
Eur J Neurosci ; 51(12): 2329-2342, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-30044021

RESUMO

Shift-work and jet-lag-related disorders are caused by the limited flexibility of the suprachiasmatic nucleus (SCN), a master circadian clock in the hypothalamus, to adjust to new light-dark (LD) cycles. Recent findings confirmed here establish that behavioral jet lag after simulated time-zone travel is virtually eliminated following bifurcated circadian entrainment under a novel and atypical 24-h light:dark:light:dark (LDLD) cycle. To investigate the mechanisms of this fast resetting, we examined the oscillatory stability of the SCN and peripheral tissues in LDLD-bifurcated mice employing the dissection procedure as a perturbing resetting stimulus. SCN, lung, liver, and adrenal tissue were extracted at times throughout the day from female and male PER2::Luciferase knock-in mice entrained to either LDLD or a normal LD cycle. Except for adrenals, the phase of the cultured explants was more strongly set by dissection under LDLD than under normal LD. Acute bioluminescence levels of SCN explants indicate that the rhythm amplitude of PER2 is reduced and phase is altered in LDLD. Real-time quantitative PCR suggests that amplitude and rhythmicity of canonical clock genes in the lung, liver, and kidney are also significantly reduced in LDLD in vivo. Furthermore, spatiotemporal patterns of PER2 peak time in cultured SCN were altered in LDLD. These results suggest that altered gene expression patterns in the SCN caused by bifurcation likely result in fast resetting of behavior and cultured explants, consistent with previously reported mathematical models. Thus, non-invasive, simple light manipulations can make circadian rhythms more adaptable to abrupt shifts in the environmental LD cycle.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Feminino , Luz , Masculino , Camundongos , Fotoperíodo , Núcleo Supraquiasmático
3.
J Emerg Med ; 58(1): 130-140, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31761463

RESUMO

BACKGROUND: Shiftwork causes circadian disruption and is the primary reason for attrition from Emergency Medicine. OBJECTIVES: We aimed to develop concrete recommendations to mitigate negative effects of shiftwork based on measures of work, sleep, alertness, and performance in emergency physicians. METHODS: Thirty-one Emergency Medicine residents were surveyed retrospectively about sleep and alertness on different shifts. Additionally, the sleep, performance, and alertness of 22 Emergency Medicine resident and attending physicians was tracked continuously over 4 weeks via sleep logs, actigraphy, real-time reported sleepiness, and performance on a vigilance task. Schedules were analyzed for circadian disruption. Physicians also predicted their sleep schedules, which were compared with actual schedules; participants tracked extensions of shifts, schedule changes, and shifts in other hospitals. RESULTS: Daily rhythms were apparent in real-time performance and alertness data, with peaks at around 4 pm. Sleep difficulty was highest, sleep shortest, and alertness and performance lowest for night shifts. Emergency Medicine residents tended to cluster multiple night shifts in a row, despite evidence of accumulating sleep debt over consecutive shifts. There were many shifts that caused high circadian disruption, which could be avoided by simple amendments to scheduling practices. CONCLUSIONS: Circadian principles should be applied as suggested by the American College of Emergency Physicians. Chronotype should be considered in scheduling. Night shifts, particularly, should not be extended. Clustering all night shifts in a row should probably be discouraged. The additional vulnerabilities for night shift could be mitigated by adopting napping mid- or post night shift and by providing pay differentials.

4.
Yale J Biol Med ; 92(2): 187-199, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31249479

RESUMO

The activity/rest rhythm of mammals reflects the output of an endogenous circadian oscillator entrained to the solar day by light. Despite detailed understanding of the neural and molecular bases of mammalian rhythms, we still lack practical tools for achieving rapid and flexible adjustment of clocks to accommodate shift-work, trans-meridian jet travel, or space exploration. Efforts to adapt clocks have focused on resetting the phase of an otherwise unaltered circadian clock. Departing from this tradition, recent work has demonstrated that bifurcation of circadian waveform in mice facilitates entrainment to extremely long and short zeitgeber periods. Here we evaluate the formal nature of entrainment to extreme non-24 h days in male Syrian hamsters. Wheel-running rhythms were first bifurcated into a 24 h rest/activity/rest/activity cycle according to established methods. Thereafter the 24 h lighting cycle was incrementally adjusted over several weeks to 30 h or to 18 h. Almost without exception, wheel-running rhythms of hamsters in gradually lengthened or shortened zeitgebers remained synchronized with the lighting cycle, with greater temporal precision observed in the former condition. Data from animals transferred abruptly from 24 h days to long or short cycles suggested that gradual adaptation facilitates but is not necessary for successful behavioral entrainment. The unprecedented behavioral adaptation following waveform bifurcation reveals a latent plasticity in mammalian circadian systems that can be realized in the absence of pharmacological or genetic manipulations. Oscillator interactions underlying circadian waveform manipulation, thus, represent a tractable target for understanding and enhancing circadian rhythm resetting.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Mesocricetus/fisiologia , Atividade Motora/efeitos da radiação , Adaptação Fisiológica/fisiologia , Adaptação Fisiológica/efeitos da radiação , Animais , Cricetinae , Luz , Masculino , Camundongos , Atividade Motora/fisiologia , Fotoperíodo , Fatores de Tempo
5.
PLoS Genet ; 11(7): e1005344, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26131556

RESUMO

Many protein-coding genes identified by genome sequencing remain without functional annotation or biological context. Here we define a novel protein-coding gene, Nmf9, based on a forward genetic screen for neurological function. ENU-induced and genome-edited null mutations in mice produce deficits in vestibular function, fear learning and circadian behavior, which correlated with Nmf9 expression in inner ear, amygdala, and suprachiasmatic nuclei. Homologous genes from unicellular organisms and invertebrate animals predict interactions with small GTPases, but the corresponding domains are absent in mammalian Nmf9. Intriguingly, homozygotes for null mutations in the Drosophila homolog, CG45058, show profound locomotor defects and premature death, while heterozygotes show striking effects on sleep and activity phenotypes. These results link a novel gene orthology group to discrete neurological functions, and show conserved requirement across wide phylogenetic distance and domain level structural changes.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/genética , Medo/fisiologia , Proteínas do Tecido Nervoso/genética , Vestíbulo do Labirinto/patologia , Tonsila do Cerebelo/metabolismo , Animais , Sequência de Bases , Comportamento Animal/fisiologia , Drosophila melanogaster/genética , Feminino , Deleção de Genes , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Análise de Sequência de DNA , Fatores Sexuais , Sono/genética , Sono/fisiologia , Núcleo Supraquiasmático/metabolismo , Testes de Função Vestibular , Vestíbulo do Labirinto/fisiologia
6.
Alcohol Clin Exp Res ; 38(3): 879-88, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24256465

RESUMO

BACKGROUND: Physiological responses to acute ethanol (EtOH) injection depend critically on the timing of their administration. Whether daily timing modulates effects of longer intoxication intervals characteristic of alcohol-dependent humans remains unknown. The present work examines time-of-day effects during EtOH exposure and withdrawal measured by locomotor activity (ActLoc ) and body temperature (Tb ) across multiple rounds of EtOH exposure/withdrawal. METHODS: Two groups of C57BL/6J mice (n = 8 per group), implanted with radio-telemeters, were entrained to opposite light-dark periods (14:10 LD cycle) so that their rest/activity cycles were 12 hours apart. Under a 2-hour skeleton photoperiod animals were simultaneously exposed to 3 daily cycles of EtOH vapor inhalation (14 hours EtOH on) and withdrawal (10 hours EtOH off). During this time, air-only control groups (n = 4 per group) matched for entrainment were handled in a comparable manner. After the third cycle of EtOH vapor, the animals were left undisturbed for 11 days to recover. The 14-day protocol was repeated 3 additional times. RESULTS: During intoxication, mice exposed to EtOH in the subjective night exhibited greater hypothermia and more overall disruptions in the Tb and ActLoc rhythms. Acute withdrawal induced hypothermia during the subjective night and hyperthermia during the subjective day. Animals in both phases demonstrated significant disruptions in ActLoc during withdrawal. ActLoc had little effect on Tb during EtOH exposure, but it significantly influenced Tb during acute withdrawal. CONCLUSIONS: The physiological responses of both EtOH exposure and withdrawal differ as a function of time of day. These findings suggest that controlling for the circadian phase of exposure and/or withdrawal may mitigate the severity of symptomatic withdrawal.


Assuntos
Intoxicação Alcoólica/fisiopatologia , Temperatura Corporal , Ritmo Circadiano , Síndrome de Abstinência a Substâncias/fisiopatologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
7.
Front Endocrinol (Lausanne) ; 14: 1269672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38205198

RESUMO

Background: The suprachiasmatic nucleus (SCN) within the hypothalamus is a key brain structure required to relay light information to the body and synchronize cell and tissue level rhythms and hormone release. Specific subpopulations of SCN neurons, defined by their peptide expression, regulate defined SCN output. Here we focus on the vasoactive intestinal peptide (VIP) expressing neurons of the SCN. SCN VIP neurons are known to regulate circadian rhythms and reproductive function. Methods: To specifically study SCN VIP neurons, we generated a novel knock out mouse line by conditionally deleting the SCN enriched transcription factor, Ventral Anterior Homeobox 1 (Vax1), in VIP neurons (Vax1Vip; Vax1fl/fl:VipCre). Results: We found that Vax1Vip females presented with lengthened estrous cycles, reduced circulating estrogen, and increased depressive-like behavior. Further, Vax1Vip males and females presented with a shortened circadian period in locomotor activity and ex vivo SCN circadian period. On a molecular level, the shortening of the SCN period was driven, at least partially, by a direct regulatory role of VAX1 on the circadian clock genes Bmal1 and Per2. Interestingly, Vax1Vip females presented with increased expression of arginine vasopressin (Avp) in the paraventricular nucleus, which resulted in increased circulating corticosterone. SCN VIP and AVP neurons regulate the reproductive gonadotropin-releasing hormone (GnRH) and kisspeptin neurons. To determine how the reproductive neuroendocrine network was impacted in Vax1Vip mice, we assessed GnRH sensitivity to a kisspeptin challenge in vivo. We found that GnRH neurons in Vax1Vip females, but not males, had an increased sensitivity to kisspeptin, leading to increased luteinizing hormone release. Interestingly, Vax1Vip males showed a small, but significant increase in total sperm and a modest delay in pubertal onset. Both male and female Vax1Vip mice were fertile and generated litters comparable in size and frequency to controls. Conclusion: Together, these data identify VAX1 in SCN VIP neurons as a neurological overlap between circadian timekeeping, female reproduction, and depressive-like symptoms in mice, and provide novel insight into the role of SCN VIP neurons.


Assuntos
Neuropeptídeos , Fatores de Transcrição , Masculino , Feminino , Animais , Camundongos , Peptídeo Intestinal Vasoativo , Kisspeptinas/genética , Sêmen , Núcleo Supraquiasmático , Reprodução , Neurônios , Ritmo Circadiano , Hormônio Liberador de Gonadotropina , Proteínas de Homeodomínio
8.
Mol Metab ; 57: 101431, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34974160

RESUMO

OBJECTIVE: The increasing prevalence of obesity makes it important to increase the understanding of the maturation and function of the neuronal integrators and regulators of metabolic function. METHODS: Behavioral, molecular, and physiological analyses of transgenic mice with Sine oculis 3 (Six3) deleted in mature neurons using the Synapsincreallele. RESULTS: Conditional deletion of the homeodomain transcription factor Six3 in mature neurons causes dwarfism and weakens circadian wheel-running activity rhythms but increases general activity at night, and improves metabolic function, without impacting pubertal onset or fertility in males. The reduced growth in 6-week-old Six3fl/fl:Synapsincre (Six3syn) males correlates with increased somatostatin (SS) expression in the hypothalamus and reduced growth hormone (GH) in the pituitary. In contrast, 12-week-old Six3syn males have increased GH release, despite an increased number of the inhibitory SS neurons in the periventricular nucleus. GH is important in glucose metabolism, muscle function, and bone health. Interestingly, Six3syn males have improved glucose tolerance at 7, 12, and 18 weeks of age, which, in adulthood, is associated with increased % lean mass and increased metabolic rates. Further, 12-week-old Six3syn males have reduced bone mineralization and a lower bone mineral density, indicating that reduced GH levels during early life cause a long-term reduction in bone mineralization. CONCLUSION: Our study points to the novel role of Six3 in post-proliferative neurons to regulate metabolic function through SS neuron control of GH release.


Assuntos
Nanismo , Proteínas de Homeodomínio , Animais , Nanismo/genética , Nanismo/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo
9.
Front Endocrinol (Lausanne) ; 13: 956169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992114

RESUMO

Disruptions to the circadian system alter reproductive capacity, particularly in females. Mice lacking the core circadian clock gene, Bmal1, are infertile and have evidence of neuroendocrine disruption including the absence of the preovulatory luteinizing hormone (LH) surge and enhanced responsiveness to exogenous kisspeptin. Here, we explore the role of Bmal1 in suprachiasmatic nucleus (SCN) neuron populations known to project to the neuroendocrine axis. We generated four mouse lines using Cre/Lox technology to create conditional deletion of Bmal1 in arginine vasopressin (Bmal1fl/fl:Avpcre ), vasoactive intestinal peptide (Bmal1fl/fl:Vipcre ), both (Bmal1fl/fl:Avpcre+Vipcre ), and neuromedin-s (Bmal1fl/fl:Nmscre ) neurons. We demonstrate that the loss of Bmal1 in these populations has substantial effects on home-cage circadian activity and temperature rhythms. Despite this, we found that female mice from these lines demonstrated normal estrus cycles, fecundity, kisspeptin responsiveness, and inducible LH surge. We found no evidence of reproductive disruption in constant darkness. Overall, our results indicate that while conditional Bmal1 knockout in AVP, VIP, or NMS neurons is sufficient to disrupted locomotor activity, this disruption is insufficient to recapitulate the neuroendocrine reproductive effects of the whole-body Bmal1 knockout.


Assuntos
Neurônios do Núcleo Supraquiasmático , Peptídeo Intestinal Vasoativo , Animais , Arginina Vasopressina/genética , Ritmo Circadiano/fisiologia , Feminino , Fertilidade , Kisspeptinas/genética , Hormônio Luteinizante , Camundongos , Núcleo Supraquiasmático/metabolismo , Neurônios do Núcleo Supraquiasmático/metabolismo
10.
Front Neurol ; 12: 625334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33597916

RESUMO

In this review, we discuss the remarkable potency and potential applications of a form of light that is often overlooked in a circadian context: naturalistic levels of dim light at night (nLAN), equivalent to intensities produced by the moon and stars. It is often assumed that such low levels of light do not produce circadian responses typically associated with brighter light levels. A solid understanding of the impacts of very low light levels is complicated further by the broad use of the somewhat ambiguous term "dim light," which has been used to describe light levels ranging seven orders of magnitude. Here, we lay out the argument that nLAN exerts potent circadian effects on numerous mammalian species, and that given conservation of anatomy and function, the efficacy of light in this range in humans warrants further investigation. We also provide recommendations for the field of chronobiological research, including minimum requirements for the measurement and reporting of light, standardization of terminology (specifically as it pertains to "dim" light), and ideas for reconsidering old data and designing new studies.

11.
Proc Biol Sci ; 277(1695): 2867-74, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20444712

RESUMO

The seasonal reproductive cycle of photoperiodic rodents is conceptualized as a series of discrete melatonin-dependent neuroendocrine transitions. Least understood is the springtime restoration of responsiveness to winter-like melatonin signals (breaking of refractoriness) that enables animals to once again respond appropriately to winter photoperiods the following year. This has been posited to require many weeks of long days based on studies employing static photoperiods instead of the annual pattern of continually changing photoperiods under which these mechanisms evolved. Maintaining Siberian hamsters under simulated natural photoperiods, we demonstrate that winter refractoriness is broken within six weeks after the spring equinox. We then test whether a history of natural photoperiod exposure can eliminate the requirement for long-day melatonin signalling. Hamsters pinealectomized at the spring equinox and challenged 10 weeks later with winter melatonin infusions exhibited gonadal regression, indicating that refractoriness was broken. A photostimulatory effect on body weight is first observed in the last four weeks of winter. Thus, the seasonal transition to the summer photosensitive phenotype is triggered prior to the equinox without exposure to long days and is thereafter melatonin-independent. Distinctions between photoperiodic and circannual seasonal organization erode with the incorporation in the laboratory of ecologically relevant day length conditions.


Assuntos
Melatonina/metabolismo , Phodopus/fisiologia , Fotoperíodo , Reprodução/fisiologia , Estações do Ano , Animais , Peso Corporal , Cricetinae , Gônadas/fisiologia , Masculino , Glândula Pineal/cirurgia , Transdução de Sinais , Testículo/fisiologia
12.
Mol Cell Endocrinol ; 503: 110687, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31866317

RESUMO

In mammals, the pineal gland is the sole endocrine source of melatonin, which is secreted according to daily and seasonal patterns. This mini-review synthesizes the established endocrine actions of melatonin in the following temporal contexts. Melatonin is a strictly regulated output of the circadian timing system, but under certain conditions, may also entrain the circadian pacemaker and clocks in peripheral tissues. As the waveform of nightly melatonin secretion varies seasonally, melatonin provides a hormonal representation of the time of year. The duration of elevated melatonin secretion regulates reproductive physiology and other seasonal adaptations either by entraining a circannual rhythm or by inducing seasonal responses directly. An entrainment action of nightly melatonin on clock gene expression in the pars tuberalis of the anterior pituitary may partly underly its mechanistic role as a photoperiodic switch. Melatonin has important functions developmentally to regulate multiple physiological systems and program timing of puberty. Endogenous melatonergic systems are disrupted by modern lifestyles of humans through altered circadian entrainment, acute suppression by light and self-administration of pharmacological melatonin. Non-endocrine actions of locally synthesized melatonin fall outside of the scope of this mini-review.


Assuntos
Ritmo Circadiano/fisiologia , Melatonina/metabolismo , Glândula Pineal/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Expressão Gênica/fisiologia , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Melatonina/genética , Fotoperíodo , Estações do Ano , Transdução de Sinais/genética , Fatores de Tempo
13.
Mol Neurobiol ; 57(2): 1217-1232, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31705443

RESUMO

The brain's primary circadian pacemaker, the suprachiasmatic nucleus (SCN), is required to translate day-length and circadian rhythms into neuronal, hormonal, and behavioral rhythms. Here, we identify the homeodomain transcription factor ventral anterior homeobox 1 (Vax1) as required for SCN development, vasoactive intestinal peptide expression, and SCN output. Previous work has shown that VAX1 is required for gonadotropin-releasing hormone (GnRH/LHRH) neuron development, a neuronal population controlling reproductive status. Surprisingly, the ectopic expression of a Gnrh-Cre allele (Gnrhcre) in the SCN confirmed the requirement of both VAX1 (Vax1flox/flox:Gnrhcre, Vax1Gnrh-cre) and sine oculis homeobox protein 6 (Six6flox/flox:Gnrhcre, Six6Gnrh-cre) in SCN function in adulthood. To dissociate the role of Vax1 and Six6 in GnRH neuron and SCN function, we used another Gnrh-cre allele that targets GnRH neurons, but not the SCN (Lhrhcre). Both Six6Lhrh-cre and Vax1Lhrh-cre were infertile, and in contrast to Vax1Gnrh-cre and Six6Gnrh-cre mice, Six6Lhrh-cre and Vax1Lhrh-cre had normal circadian behavior. Unexpectedly, ~ 1/4 of the Six6Gnrh-cre mice were unable to entrain to light, showing that ectopic expression of Gnrhcre impaired function of the retino-hypothalamic tract that relays light information to the brain. This study identifies VAX1, and confirms SIX6, as transcription factors required for SCN development and function and demonstrates the importance of understanding how ectopic CRE expression can impact the results.


Assuntos
Proteínas de Homeodomínio/metabolismo , Neuropeptídeos/metabolismo , Núcleo Supraquiasmático/crescimento & desenvolvimento , Núcleo Supraquiasmático/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Camundongos , Neurônios/metabolismo
14.
Neuron ; 108(5): 937-952.e7, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-32979312

RESUMO

The blood vessels in the central nervous system (CNS) have a series of unique properties, termed the blood-brain barrier (BBB), which stringently regulate the entry of molecules into the brain, thus maintaining proper brain homeostasis. We sought to understand whether neuronal activity could regulate BBB properties. Using both chemogenetics and a volitional behavior paradigm, we identified a core set of brain endothelial genes whose expression is regulated by neuronal activity. In particular, neuronal activity regulates BBB efflux transporter expression and function, which is critical for excluding many small lipophilic molecules from the brain parenchyma. Furthermore, we found that neuronal activity regulates the expression of circadian clock genes within brain endothelial cells, which in turn mediate the activity-dependent control of BBB efflux transport. These results have important clinical implications for CNS drug delivery and clearance of CNS waste products, including Aß, and for understanding how neuronal activity can modulate diurnal processes.


Assuntos
Barreira Hematoencefálica/fisiologia , Relógios Circadianos/genética , Ritmo Circadiano/genética , Células Endoteliais/fisiologia , Neurônios/fisiologia , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Barreira Hematoencefálica/efeitos dos fármacos , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Drogas Desenhadas/administração & dosagem , Células Endoteliais/efeitos dos fármacos , Feminino , Homeostase/efeitos dos fármacos , Homeostase/genética , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos
15.
Alcohol Clin Exp Res ; 33(7): 1286-93, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19389184

RESUMO

BACKGROUND: There is a daily rhythm in the voluntary intake of ethanol in mice, with greatest consumption in the early night and lowest intake during the day. The role of daily timing of ethanol exposure on the development and control of long-term ethanol self-administration has been neglected. The present study examines these issues using C57BL/6J mice. METHODS: Mice were repeatedly exposed to 10% ethanol for 2 hours early in the night or day for several weeks. Subsequently, ethanol was available at the opposite time (Expt 1) or 24 hours daily (Expts 1 and 2). Lick sensors recorded the patterns of drinking activity in Experiment 2. RESULTS: Mice exposed to ethanol during the night drink more than mice exposed during the day. Prior history did not affect ethanol intake when the schedule was reversed. Under 24-hour exposure conditions, mice with a history of drinking during the night consumed significantly more than mice drinking during the day. The circadian patterns of drinking were not altered. CONCLUSIONS: These results demonstrate that the daily timing of ethanol exposure exerts enduring effects of self-administration of ethanol in mice. Understanding how circadian rhythms regulate ethanol consumption may be valuable for modifying subsequent intake.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Etanol/administração & dosagem , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Distribuição Aleatória
16.
Clocks Sleep ; 1(3): 290-305, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33089170

RESUMO

Exposure of mice to a 24 h light:dark:light:dark (LDLD) cycle with dimly illuminated nights induces the circadian timing system to program two intervals of activity and two intervals of rest per 24 h cycle and subsequently allows entrainment to a variety of extraordinary light regimens including 30 h LDLD cycles. Little is known about critical lighting requirements to induce and maintain this non-standard entrainment pattern, termed "bifurcation," and to enhance the range of apparent entrainment. The current study determined the necessary duration of the photophase for animals to bifurcate and assessed whether requirements for maintenance differed from those for induction. An objective index of bifurcated entrainment varied with length of the photophase over 4-10 h durations, with highest values at 8 h. To assess photic requirements for the maintenance of bifurcation, mice from each group were subsequently exposed to the LDLD cycle with 4 h photophases. While insufficient to induce bifurcation, this photoperiod maintained bifurcation in mice transferred from inductive LDLD cycles. Entrainment to 30 h LDLD cycles also varied with photoperiod duration. These studies characterize non-invasive tools that reveal latent flexibility in the circadian control of rest/activity cycles with important translational potential for addressing needs of human shift-workers.

17.
Clocks Sleep ; 1(3): 394-413, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33089177

RESUMO

The circadian system is generally considered to be incapable of adjusting to rapid changes in sleep/work demands. In shiftworkers this leads to chronic circadian disruption and sleep loss, which together predict underperformance at work and negative health consequences. Two distinct experimental protocols have been proposed to increase circadian flexibility in rodents using dim light at night: rhythm bifurcation and T-cycle (i.e., day length) entrainment. Successful translation of such protocols to human shiftworkers could facilitate alignment of internal time with external demands. To assess entrainment flexibility following bifurcation and exposure to T-cycles, mice in Study 1 were repeatedly phase-shifted. Mice from experimental conditions rapidly phase-shifted their activity, while control mice showed expected transient misalignment. In Study 2 and 3, mice followed a several weeks-long intervention designed to model a modified DuPont or Continental shiftwork schedule, respectively. For both schedules, bifurcation and nocturnal dim lighting reduced circadian misalignment. Together, these studies demonstrate proof of concept that mammalian circadian systems can be rendered sufficiently flexible to adapt to multiple, rapidly changing shiftwork schedules. Flexible adaptation to exotic light-dark cycles likely relies on entrainment mechanisms that are distinct from traditional entrainment.

18.
Physiol Behav ; 210: 112625, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31325510

RESUMO

Under permissive conditions, mice and hamsters exposed to a polyphasic light regime consisting of two light and two dark phases every 24 h (Light:Dark:Light:Dark; LDLD) can adopt a bifurcated entrainment pattern with roughly equal amounts of running wheel activity in each of the two nights. This rhythm "bifurcation" has significant after-effects on increased circadian adaptability: Mice that have been bifurcated show accelerated rates of re-entrainment after a sudden phase shift and have a markedly expanded range of entrainment. Identifying environmental and physiological factors that facilitate or prevent rhythm bifurcation in LDLD conditions will contribute to an understanding of mechanisms underlying enhanced circadian plasticity. Here we investigate the effects of sex, age, light intensity, access to a running wheel, melatonin, and diet composition on bifurcation behaviors of mice (C57Bl/6 J) exposed to LDLD. Female mice and young mice (<20 weeks) express more symmetrically bifurcated activity compared to male mice and older mice (>30 weeks). Additionally and independently, higher photophase intensities (~500 lx) predict more symmetric entrainment than low levels of light (~50 lx). Without access to a functional running-wheel, mice do not adopt bimodal activity patterns and only transiently maintain them, suggesting that high levels of aerobic activity are necessary for rhythm bifurcation. Neither a lifetime exposure to melatonin administered in the drinking water nor a high fat diet affected bifurcation. Collectively, these results demonstrate that circadian plasticity can be strongly modulated by intrinsic and extrinsic factors. With enhanced mechanistic understanding of this modulation, it may be possible to render human clocks more adaptable and thereby ameliorate negative consequences associated with repeated jet-lag or shift-work.


Assuntos
Comportamento Animal/fisiologia , Ritmo Circadiano/fisiologia , Meio Ambiente , Envelhecimento/fisiologia , Animais , Dieta , Dieta Hiperlipídica , Feminino , Luz , Masculino , Melatonina/sangue , Melatonina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Fotoperíodo , Caracteres Sexuais
19.
J Biol Rhythms ; 34(3): 227-230, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170882

RESUMO

Local and national governments around the world are currently considering the elimination of the annual switch to and from Daylight Saving Time (DST). As an international organization of scientists dedicated to studying circadian and other biological rhythms, the Society for Research on Biological Rhythms (SRBR) engaged experts in the field to write a Position Paper on the consequences of choosing to live on DST or Standard Time (ST). The authors take the position that, based on comparisons of large populations living in DST or ST or on western versus eastern edges of time zones, the advantages of permanent ST outweigh switching to DST annually or permanently. Four peer reviewers provided expert critiques of the initial submission, and the SRBR Executive Board approved the revised manuscript as a Position Paper to help educate the public in their evaluation of current legislative actions to end DST.


Assuntos
Ritmo Circadiano , Luz , Fotoperíodo , Humanos , Estações do Ano , Sistema Solar , Fatores de Tempo
20.
J Biol Rhythms ; 22(4): 356-67, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17660452

RESUMO

In mammals, light entrains endogenous circadian pacemakers by inducing daily phase shifts via a photoreceptor mechanism recently discovered in retinal ganglion cells. Light that is comparable in intensity to moonlight is generally ineffective at inducing phase shifts or suppressing melatonin secretion, which has prompted the view that circadian photic sensitivity has been titrated so that the central pacemaker is unaffected by natural nighttime illumination. However, the authors have shown in several different entrainment paradigms that completely dark nights are not functionally equivalent to dimly lit nights, even when nighttime illumination is below putative thresholds for the circadian visual system. The present studies extend these findings. Dim illumination is shown here to be neither a strong zeitgeber, consistent with published fluence response curves, nor a potentiator of other zeitgebers. Nevertheless, dim light markedly alters the behavior of the free-running circadian pacemaker. Syrian hamsters were released from entrained conditions into constant darkness or dim narrowband green illumination (~0.01 lx, 1.3 x 10(-9) W/cm(2), peak lambda = 560 nm). Relative to complete darkness, constant dim light lengthened the period by ~0.3 h and altered the waveform of circadian rhythmicity. Among animals transferred from long day lengths (14 L:10 D) into constant conditions, dim illumination increased the duration of the active phase (alpha) by ~3 h relative to complete darkness. Short day entrainment (8 L:16 D) produced initially long alpha that increased further under constant dim light but decreased under complete darkness. In contrast, dim light pulses 2 h or longer produced effects on circadian phase and melatonin secretion that were small in magnitude. Furthermore, the amplitude of phase resetting to bright light and nonphotic stimuli was similar against dimly lit and dark backgrounds, indicating that the former does not directly amplify circadian inputs. Dim illumination markedly alters circadian waveform through effects on alpha, suggesting that dim light influences the coupling between oscillators theorized to program the beginning and end of subjective night. Physiological mechanisms responsible for conveying dim light stimuli to the pacemaker and implications for chronotherapeutics warrant further study.


Assuntos
Relógios Biológicos/efeitos da radiação , Ritmo Circadiano , Iluminação/métodos , Fotoperíodo , Animais , Relógios Biológicos/fisiologia , Cricetinae , Relação Dose-Resposta à Radiação , Masculino , Mesocricetus , Atividade Motora , Oscilometria , Estimulação Luminosa/métodos , Condicionamento Físico Animal , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA