Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074756

RESUMO

In this study, we synthesize terrestrial and marine proxy records, spanning the past 620 ky, to decipher pan-African climate variability and its drivers and potential linkages to hominin evolution. We find a tight correlation between moisture availability across Africa to El Niño Southern Ocean oscillation (ENSO) variability, a manifestation of the Walker Circulation, that was most likely driven by changes in Earth's eccentricity. Our results demonstrate that low-latitude insolation was a prominent driver of pan-African climate change during the Middle to Late Pleistocene. We argue that these low-latitude climate processes governed the dispersion and evolution of vegetation as well as mammals in eastern and western Africa by increasing resource-rich and stable ecotonal settings thought to have been important to early modern humans.


Assuntos
Evolução Biológica , Mudança Climática/história , El Niño Oscilação Sul/história , África , História Antiga , Humanos
2.
Glob Chang Biol ; 29(17): 4775-4792, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37337393

RESUMO

Tropical forests are changing in composition and productivity, probably in response to changes in climate and disturbances. The responses to these multiple environmental drivers, and the mechanisms underlying the changes, remain largely unknown. Here, we use a functional trait approach on timescales of 10,000 years to assess how climate and disturbances influence the community-mean adult height, leaf area, seed mass, and wood density for eight lowland and highland forest landscapes. To do so, we combine data of eight fossil pollen records with functional traits and proxies for climate (temperature, precipitation, and El Niño frequency) and disturbances (fire and general disturbances). We found that temperature and disturbances were the most important drivers of changes in functional composition. Increased water availability (high precipitation and low El Niño frequency) generally led to more acquisitive trait composition (large leaves and soft wood). In lowland forests, warmer climates decreased community-mean height probably because of increased water stress, whereas in highland forests warmer climates increased height probably because of upslope migration of taller species. Disturbance increased the abundance of acquisitive, disturbance-adapted taxa with small seeds for quick colonization of disturbed sites, large leaves for light capture, and soft wood to attain fast height growth. Fire had weak effects on lowland forests but led to more stress-adapted taxa that are tall with fast life cycles and small seeds that can quickly colonize burned sites. Site-specific analyses were largely in line with cross-site analyses, except for varying site-level effects of El Niño frequency and fire activity, possibly because regional patterns in El Niño are not a good predictor of local changes, and charcoal abundances do not reflect fire intensity or severity. With future global changes, tropical Amazonian and Andean forests may transition toward shorter, drought- and disturbance-adapted forests in the lowlands but taller forests in the highlands.

3.
Ecol Lett ; 22(6): 925-935, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30883016

RESUMO

Tropical forests are shifting in species and trait composition, but the main underlying causes remain unclear because of the short temporal scales of most studies. Here, we develop a novel approach by linking functional trait data with 7000 years of forest dynamics from a fossil pollen record of Lake Sauce in the Peruvian Amazon. We evaluate how climate and human disturbances affect community trait composition. We found weak relationships between environmental conditions and traits at the taxon level, but strong effects for community-mean traits. Overall, community-mean traits were more responsive to human disturbances than to climate change; human-induced erosion increased the dominance of dense-wooded, non-zoochorous species with compound leaves, and human-induced fire increased the dominance of tall, zoochorous taxa with large seeds and simple leaves. This information can help to enhance our understanding of forest responses to past environmental changes, and improve predictions of future changes in tropical forest composition.


Assuntos
Florestas , Árvores , Clima Tropical , Mudança Climática , Humanos , Folhas de Planta , Plantas
4.
New Phytol ; 212(2): 510-22, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27374975

RESUMO

Microrefugia are important for supporting populations during periods of unfavourable climate change and in facilitating rapid migration as conditions ameliorate. With ongoing anthropogenic climate change, microrefugia could have an important conservation value; however, a simple tool has not been developed and tested to predict which settings are microrefugial. We provide a tool based on terrain ruggedness modelling of individual catchments to predict Andean microrefugia. We tested the predictions using nine Holocene Polylepis pollen records. We used the mid-Holocene dry event, a period of peak aridity for the last 100 000 yr, as an analogue climate scenario for the near future. The results suggest that sites with high terrain rugosity have the greatest chance of sustaining mesic conditions under drier-than-modern climates. Fire is a feature of all catchments; however, an increase in fire is only recorded in settings with low rugosity. Owing to rising temperatures and greater precipitation variability, Andean ecosystems are threatened by increasing moisture stress. Our results suggest that high terrain rugosity helps to create more resilient catchments by trapping moisture through orographic rainfall and providing firebreaks that shelter forest from fire. On this basis, conservation policy should target protection and management of catchments with high terrain rugosity.


Assuntos
Ecossistema , Florestas , Geografia , Sedimentos Geológicos/química , Paleontologia , Peru , Fatores de Tempo
5.
Sci Total Environ ; 934: 172963, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705300

RESUMO

The prevalence in allergic diseases has increased considerably in the past decades. An important trigger of the symptoms of allergic rhinitis (hay fever) is the pollen of wind-pollinating plants. This pollen is developed by plants and is released into the air where it gets exposed to environmental influences and air pollution. We investigated the chemical changes to pollen that occur after release from the flower in a rural (Veluwe) and an urban (Amsterdam) site in the Netherlands using Fourier Transform Infrared (FTIR) spectroscopy. During the spring/summer of 2020 (during the COVID pandemic) the pollen of nine taxa (Alnus, Betula, Fagus, Fraxinus, Pinus, Plantago, Poaceae, Quercus and Salix) were collected directly from flowers and the air (using a mobile sampler). FTIR spectra were obtained for multiple individual pollen grains for each taxa. The spectra obtained from airborne pollen collected at the rural vs. urban sites did not show any statistical difference. This is possibly a result of a reduced difference in pollutant concentrations between the two sites due to the COVID-19-lockdown measures were in place. However, consistent differences in the FTIR spectra recovered from airborne vs. flower pollen were recorded for all pollen taxa. After the release from the flower the chemical composition of the pollen changed: (i) polysaccharides are converted to monosaccharides; (ii) protein concentration and/or nitration/oxidation level is altered; (iii) lipids are modified and/or reduced in concentration. These changes may alter the allergenicity of the pollen and suggest that further work on the allergenic nature of airborne pollen is required.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Alérgenos , Monitoramento Ambiental , Flores , Pólen , Países Baixos , Alérgenos/análise , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Espectroscopia de Infravermelho com Transformada de Fourier , COVID-19
6.
Veg Hist Archaeobot ; 33(2): 221-236, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404455

RESUMO

Phytoliths preserved in soils and sediments can be used to provide unique insights into past vegetation dynamics in response to human and climate change. Phytoliths can reconstruct local vegetation in terrestrial soils where pollen grains typically decay, providing a range of markers (or lack thereof) that document past human activities. The ca. 6 million km2 of Amazonian forests have relatively few baseline datasets documenting changes in phytolith representation across gradients of human disturbances. Here we show that phytolith assemblages vary on local scales across a gradient of (modern) human disturbance in tropical rainforests of Suriname. Detrended correspondence analysis showed that the phytolith assemblages found in managed landscapes (shifting cultivation and a garden), unmanaged forests, and abandoned reforesting sites were clearly distinguishable from intact forests and from each other. Our results highlight the sensitivity and potential of phytoliths to be used in reconstructing successional trajectories after site usage and abandonment. Percentages of specific phytolith morphotypes were also positively correlated with local palm abundances derived from UAV data, and with biomass estimated from MODIS satellite imagery. This baseline dataset provides an index of likely changes that can be observed at other sites that indicate past human activities and long-term forest recovery in Amazonia. Supplementary Information: The online version contains supplementary material available at 10.1007/s00334-023-00932-2.

7.
Ecology ; 105(5): e4272, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590101

RESUMO

Disturbances in tropical forests can have long-lasting ecological impacts, but their manifestations (ecological legacies) in modern forests are uncertain. Many Amazonian forests bear the mark of past soil modifications, species enrichments, and fire events, but the trajectories of ecological legacies from the pre-contact or post-colonial period remain relatively unexplored. We assessed the fire and vegetation history from 15 soil cores ranging from 0 to 10 km from a post-colonial Surinamese archaeological site. We show that (1) fires occurred from 96 bc to recent times and induced significant vegetation change, (2) persistent ecological legacies from pre-contact and post-colonial fire and deforestation practices were mainly within 1 km of the archaeological site, and (3) palm enrichment of Attalea, Oenocarpus and Astrocaryum occurred within 0, 1, and 8 km of the archaeological site, respectively. Our results challenge the notion of spatially extensive and persistent ecological legacies. Instead, our data indicate that the persistence and extent of ecological legacies are dependent on their timing, frequency, type, and intensity. Examining the mechanisms and manifestations of ecological legacies is crucial in assessing forest resilience and Indigenous and local land rights in the highly threatened Amazonian forests.


Assuntos
Floresta Úmida , Suriname , Incêndios , Arqueologia , Conservação dos Recursos Naturais , Fatores de Tempo
8.
Nat Ecol Evol ; 8(3): 511-518, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225430

RESUMO

The increasing similarity of plant species composition among distinct areas is leading to the homogenization of ecosystems globally. Human actions such as ecosystem modification, the introduction of non-native plant species and the extinction or extirpation of endemic and native plant species are considered the main drivers of this trend. However, little is known about when floristic homogenization began or about pre-human patterns of floristic similarity. Here we investigate vegetation trends during the past 5,000 years across the tropical, sub-tropical and warm temperate South Pacific using fossil pollen records from 15 sites on 13 islands within the biogeographical realm of Oceania. The site comparisons show that floristic homogenization has increased over the past 5,000 years. Pairwise Bray-Curtis similarity results also show that when two islands were settled by people in a given time interval, their floristic similarity is greater than when one or neither of the islands were settled. Importantly, higher elevation sites, which are less likely to have experienced human impacts, tended to show less floristic homogenization. While biotic homogenization is often referred to as a contemporary issue, we have identified a much earlier trend, likely driven by human colonization of the islands and subsequent impacts.


Assuntos
Biodiversidade , Ecossistema , Humanos , Ilhas do Pacífico , Plantas , Pólen
9.
Philos Trans R Soc Lond B Biol Sci ; 377(1849): 20200483, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35249389

RESUMO

The most profound shift in the African hydroclimate of the last 1 million years occurred around 300 thousand years (ka) ago. This change in African hydroclimate is manifest as an east-west change in moisture balance that cannot be fully explained through linkages to high latitude climate systems. The east-west shift is, instead, probably driven by a shift in the tropical Walker Circulation related to sea surface temperature change driven by orbital forcing. Comparing records of past vegetation change, and hominin evolution and development, with this breakpoint in the climate system is challenging owing to the paucity of study sites available and uncertainties regarding the dating of records. Notwithstanding these uncertainties we find that, broadly speaking, both vegetation and hominins change around 300 ka. The vegetative backdrop suggests that relative abundance of vegetative resources shifted from western to eastern Africa, although resources would have persisted across the continent. The climatic and vegetation changes probably provided challenges for hominins and are broadly coincident with the appearance of Homo sapiens (ca 315 ka) and the emergence of Middle Stone Age technology. The concomitant changes in climate, vegetation and hominin evolution suggest that these factors are closely intertwined. This article is part of the theme issue 'Tropical forests in the deep human past'.


Assuntos
Hominidae , África , África Oriental , Animais , Evolução Biológica , Mudança Climática , Florestas , Humanos
10.
Philos Trans R Soc Lond B Biol Sci ; 377(1849): 20200498, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35249380

RESUMO

Humans have been present in Amazonia throughout the Holocene, with the earliest archaeological sites dating to 12 000 years ago. The earliest inhabitants began managing landscapes through fire and plant domestication, but the total extent of vegetation modification remains relatively unknown. Here, we compile palaeoecological records from lake sediments containing charcoal and from pollen analyses to understand how human land-use affected vegetation during the early to mid-Holocene, and place our results in the context of previous archaeological work. We identified gradual, rather than abrupt changes in forest openness, disturbance and enrichment, with useful species at almost all sites. Early human occupations occurred in peripheral sites of Amazonia, where natural fires are part of the vegetation dynamics, so human-made fires did not exert a novel form of disturbance. Synchronicity between evidence of the onset of human occupation in lake records and archaeological sites was found for eastern Amazonia. For southwestern and western Amazonia and the Guiana Shield, the timing of the onset of human occupation differed by thousands of years between lake records and archaeological sites. Plant cultivation showed a different spatio-temporal pattern, appearing ca 2000 years earlier in western Amazonia than in other regions. Our findings highlight the spatial-temporal heterogeneity of Amazonia and indicate that the region cannot be treated as one entity when assessing ecological or cultural history. This article is part of the theme issue 'Tropical forests in the deep human past'.


Assuntos
Incêndios , Florestas , Arqueologia , Atividades Humanas , Humanos , Plantas
11.
Science ; 376(6593): 653-656, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35511966

RESUMO

Anthropogenically elevated CO2 (eCO2) concentrations have been suggested to increase woody cover within tropical ecosystems through fertilization. The effect of eCO2 is built into Earth system models, although testing the relationship over long periods remains challenging. Here, we explore the relative importance of six drivers of vegetation change in western Africa over the past ~500,000 years (moisture availability, fire activity, mammalian herbivore density, temperature, temperature seasonality, CO2) by coupling past environmental change data from Lake Bosumtwi (Ghana) with global data. We found that moisture availability and fire activity were the most important factors in determining woody cover, whereas the effect of CO2 was small. Our findings suggest that the role of eCO2 effects on tropical vegetation in predictive models must be reconsidered.


Assuntos
Ecossistema , Incêndios , Dióxido de Carbono , Gana , Madeira
12.
Philos Trans R Soc Lond B Biol Sci ; 377(1849): 20200499, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35249381

RESUMO

The southwestern Amazon Rainforest Ecotone (ARE) is the transitional landscape between the tropical forest and seasonally flooded savannahs of the Bolivian Llanos de Moxos. These heterogeneous landscapes harbour high levels of biodiversity and some of the earliest records of human occupation and plant domestication in Amazonia. While persistent Indigenous legacies have been demonstrated elsewhere in the Amazon, it is unclear how past human-environment interactions may have shaped vegetation composition and structure in the ARE. Here, we examine 6000 years of archaeological and palaeoecological data from Laguna Versalles (LV), Bolivia. LV was dominated by stable rainforest vegetation throughout the Holocene. Maize cultivation and cultural burning are present after ca 5700 cal yr BP. Polyculture cultivation of maize, manioc and leren after ca 3400 cal yr BP predates the formation of Amazonian Dark/Brown Earth (ADE/ABE) soils (approx. 2400 cal yr BP). ADE/ABE formation is associated with agroforestry indicated by increased edible palms, including Mauritia flexuosa and Attalea sp., and record levels of burning, suggesting that fire played an important role in agroforestry practices. The frequent use of fire altered ADE/ABD forest composition and structure by controlling ignitions, decreasing fuel loads and increasing the abundance of plants preferred by humans. Cultural burning and polyculture agroforestry provided a stable subsistence strategy that persisted despite pronounced climate change and cultural transformations and has an enduring legacy in ADE/ABE forests in the ARE. This article is part of the theme issue 'Tropical forests in the deep human past'.


Assuntos
Florestas , Floresta Úmida , Biodiversidade , Bolívia , Mudança Climática , Humanos , Plantas , Árvores
13.
PhytoKeys ; 175: 151-174, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33958934

RESUMO

Covering 560.14 hectares in the south-east of Benin, the Ewe-Adakplame Relic Forest (EARF) is a micro-refugium that shows insular characteristics within the Dahomey Gap. It is probably one of the last remnants of tropical rain forest that would have survived the late Holocene dry period. Based on intensive field investigations through 25 plots (10 × 50 m size) and matching of herbarium specimens, a checklist of 185 species of vascular plant belonging to 54 families and 142 genera is presented for this forest. In addition to the name for each taxon, we described the life form following Raunkiaer's definitions, chorology as well as threats to habitat. The Rubiaceae family was the richest (20 species) followed by the Fabaceae (15 species). Life forms showed the preponderance of phanerophytes (88%). The Chorological spectrum was dominated by Guineo-Congolean species (66%). Species richness estimated were 200.52 ± 9.2808 for Bootstrap; 217.62 ± 14.5972; 224.16 ± 15.3725 and 242.67 respectively for Chao, Jacknife1 and Jacknife2. Bootstrap appears to be the estimation closer to the field records. In Benin, EARF is home for Rinorea species described as West African forest bio-indicators and single location for Nesogordonia papaverifera, Mansonia altissima, Englerophytum oblanceolatum, Octolobus spectabilis, Vitex micrantha and most of Drypeteae tribe species (Drypetes aframensis, Drypetes afzelii, Drypetes gilgiana and Drypetes leonensis) recorded in Benin. Our results provides baseline information for further in-depth analysis of vegetation history in Benin by raising the question on the past floristic connection of the Dahomey gap and community engagement in conservation.

14.
PLoS One ; 15(3): e0230612, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226044

RESUMO

Few studies exist that document how high-elevation Andean ecosystems recover naturally after the cessation of human activities and this can limit the implementation of cost-effective restoration actions. We assessed Andean forest (Polylepis stands) and páramo grassland recovery along an elevation gradient (3,600-4,350 m.a.s.l.) in the Yanacocha Reserve (Ecuador) where natural recovery has been allowed since 1995. Within the Yanacocha Reserve in 2012 and 2014 the aboveground biomass (AGB), aboveground necromass (AGN) and belowground biomass (BGB) carbon (C) stocks were measured and C sequestration rates calculated as proxy of ecosystem recovery. The soil organic carbon (SOC) stock to 36-cm depth was also quantified during the 2012 survey. To explore potential drivers of spatiotemporal variation of the forest and páramo C stocks they were related to abiotic and biotic variables. Andean forest C stocks were influenced mainly by disturbance history and tree-species composition. Páramo C stocks´ spatial variation were related to the elevation gradient; we found a positive significant trend in páramo AGB-C stocks with elevation, whereas we found a significant negative trend in AGN-C stocks. Likewise, significant temporal changes were found for AGB-C and AGN-C stocks. Net increases in AGB-C stocks were the largest in the Andean forest and páramo, 2.5 Mg C ha-1 year-1 and 1.5 Mg C ha-1 year-1 respectively. Carbon sequestration rates were partly explained by environmental variables. In the Andean forest, plots with low dominance of Baccharis padifolia were observed to present higher AGB-C and lower BGB-C sequestration rates. In the páramo, higher sequestration rates for AGB-C were found at higher elevations and associated with higher levels of growth-forms diversity. Temporal changes in BGB-C stocks on the contrary were non-significant. Our results indicated that terrestrial aboveground C sequestration rates might be an appropriate indicator for assessing Andean forest and páramo recovery after human disturbance.


Assuntos
Sequestro de Carbono , Ecossistema , Biomassa , Carbono/análise , Clima , Equador , Humanos , Solo/química
15.
Ecol Evol ; 9(16): 9120-9128, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31463009

RESUMO

It remains poorly understood how the composition of leaf wax n-alkanes reflects the local environment. This knowledge gap inhibits the interpretation of plant responses to the environment at the community level and, by extension, inhibits the applicability of n-alkane patterns as a proxy for past environments. Here, we studied the n-alkane patterns of five Miconia species and one Guarea species, in the Ecuadorian Andes (653-3,507 m a.s.l.). We tested for species-specific responses in the average chain length (ACL), the C31/(C31 + C29) ratio (ratio), and individual odd n-alkane chain lengths across an altitudinally driven environmental gradient (mean annual temperature, mean annual relative air humidity, and mean annual precipitation). We found significant correlations between the environmental gradients and species-specific ACL and ratio, but with varying magnitude and direction. We found that the n-alkane patterns are species-specific at the individual chain length level, which could explain the high variance in metrics like ACL and ratio. Although we find species-specific sensitivity and responses in leaf n-alkanes, we also find a general decrease in "shorter" (C31) chain lengths with the environmental gradients, most strongly with temperature, suggesting n-alkanes are useful for reconstructing past environments.

16.
Nat Ecol Evol ; 2(8): 1233-1236, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30013131

RESUMO

European colonization of South America instigated a continental-scale depopulation of its indigenous peoples. The impact of depopulation on the tropical forests of South America varied across the continent. Furthermore, the role that indigenous peoples played in transforming the biodiverse tropical forests of the Andean-Amazonian corridor before AD 1492 remains unknown. Here, we reconstruct the past 1,000 years of changing human impact on the cloud forest of Ecuador at a key trade route, which connected the Inkan Empire to the peoples of Amazonia. We compare this historical landscape with the pre-human arrival (around 44,000-42,000 years ago) and modern environments. We demonstrate that intensive land-use within the cloud forest before European arrival deforested the landscape to a greater extent than modern (post-AD 1950) cattle farming. Intensive indigenous land-use ended abruptly around AD 1588 following a catastrophic population decline. Forest succession then took around 130 years to establish a structurally intact forest-one comparable to that which occurred before the arrival of the first humans to the continent. We show that nineteenth-century descriptions of the Andean-Amazonian corridor as a pristine wilderness record a shifted ecological baseline-one that less than 250 years earlier had consisted of a heavily managed and cultivated landscape.


Assuntos
Conservação dos Recursos Naturais , Florestas , Grupos Populacionais , Carvão Vegetal , Equador , Humanos , Lycopodium , Pólen , Dinâmica Populacional , Esporos Fúngicos
17.
Front Plant Sci ; 9: 196, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515609

RESUMO

Tropical ecosystems play a key role in many aspects of Earth system dynamics currently of global concern, including carbon sequestration and biodiversity. To accurately understand complex tropical systems it is necessary to parameterise key ecological aspects, such as rates of change (RoC), species turnover, dynamism, resilience, or stability. To obtain a long-term (>50 years) perspective on these ecological aspects we must turn to the fossil record. However, compared to temperate zones, collecting continuous sedimentary archives in the lowland tropics is often difficult due to the active landscape processes, with potentially frequent volcanic, tectonic, and/or fluvial events confounding sediment deposition, preservation, and recovery. Consequently, the nature, and drivers, of vegetation dynamics during the last glacial are barely known from many non-montane tropical landscapes. One of the first lowland Amazonian locations from which palaeoecological data were obtained was an outcrop near Mera (Ecuador). Mera was discovered, and analysed, by Paul Colinvaux in the 1980s, but his interpretation of the data as indicative of a forested glacial period were criticised based on the ecology and age control. Here we present new palaeoecological data from a lake located less than 10 km away from Mera. Sediment cores raised from Laguna Pindo (1250 masl; 1°27'S, 78°05'W) have been shown to span the late last glacial period [50-13 cal kyr BP (calibrated kiloyears before present)]. The palaeoecological information obtained from Laguna Pindo indicate that the region was characterised by a relatively stable plant community, formed by taxa nowadays common at both mid and high elevations. Miconia was the dominant taxon until around 30 cal kyr BP, when it was replaced by Hedyosmum, Asteraceae and Ilex among other taxa. Heat intolerant taxa including Podocarpus, Alnus, and Myrica peaked around the onset of the Last Glacial Maximum (c. 21 cal kyr BP). The results obtained from Laguna Pindo support Colinvaux's hypothesis that glacial cooling resulted in a reshuffling of taxa in the region but did not lead to a loss of the forest structure. Wide tolerances of the plant species occurring to glacial temperature range and cloud formation have been suggested to explain Pindo forest stability. This scenario is radically different than the present situation, so vulnerability of the tropical pre-montane forest is highlighted to be increased in the next decades.

18.
Holocene ; 28(11): 1818-1835, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30473597

RESUMO

Columbus' arrival in the New World in AD 1492 on the northern coast of Hispaniola was followed by a suite of changes in land-use. We reconstruct environmental change from a 225-cm-long sediment core from site Los Indios from an abandoned and sediment-filled meander of the Yaque River, Cibao Valley, northeastern Dominican Republic. The sediment record starts ca. AD 195 (ca. 1755 cal. yr BP) and the history of the meander infill was monitored by changing grain size distributions, organic matter concentration and pollen from wetland plants. From ca. AD 200 to ca. AD 1525, the pollen record indicates a diverse forest assemblage; however, the presence of pollen from potential crop plants suggest nearby small-scale subsistence crop cultivation. More abundant charcoal after ca. AD 1410 shows Amerindians increasingly used fire. The record of grain size distributions shows that the meander was temporarily part of a low energetic drainage system in which bedload and suspended sediments accumulated. After European colonization of Hispaniola increasing spores of coprophilous fungi evidence that Europeans had introduced during the first decades of colonization cattle in the Cibao Valley which gradually resulted in more open forest. The charcoal record around ca. AD 1650 reflects intensive forest clearing, suggesting that small-scale Pre-Colonial practice of crop cultivation became replaced by large-scale agriculture on the moist and nutrient rich soils along the Yaque River. Further deforestation and signals of erosion suggest that the population of colonists and introduced enslaved labour force must have increased rapidly. After ca. AD 1740 charcoal influx decreased suggesting that last deforestation activities used selective cutting to produce fire wood and timber for construction, rather than burning forest in situ. Two centuries after European colonization, by the 18th century, land-use within the Cibao Valley had become a balance between substantial livestock and crop cultivation (pollen grains have evidenced cereals, maize, and potentially also sugar cane, amaranthaceous crops and tobacco). After ca. AD 1950, swamp vegetation of Typha and Cyperaceae decreased, pointing to an almost fully terrestrialized meander with only few bodies of standing water, reflecting the present-day setting. This multiproxy reconstruction of anthropogenic environmental change shows a clear differentiation between an immediate introduction of livestock and after some 150 years the development of a European style agriculture, providing a context for archaeological investigations.

20.
PeerJ ; 6: e5055, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038851

RESUMO

Nitraria is a halophytic taxon (i.e., adapted to saline environments) that belongs to the plant family Nitrariaceae and is distributed from the Mediterranean, across Asia into the south-eastern tip of Australia. This taxon is thought to have originated in Asia during the Paleogene (66-23 Ma), alongside the proto-Paratethys epicontinental sea. The evolutionary history of Nitraria might hold important clues on the links between climatic and biotic evolution but limited taxonomic documentation of this taxon has thus far hindered this line of research. Here we investigate if the pollen morphology and the chemical composition of the pollen wall are informative of the evolutionary history of Nitraria and could explain if origination along the proto-Paratethys and dispersal to the Tibetan Plateau was simultaneous or a secondary process. To answer these questions, we applied a novel approach consisting of a combination of Fourier Transform Infrared spectroscopy (FTIR), to determine the chemical composition of the pollen wall, and pollen morphological analyses using Light Microscopy (LM) and Scanning Electron Microscopy (SEM). We analysed our data using ordinations (principal components analysis and non-metric multidimensional scaling), and directly mapped it on the Nitrariaceae phylogeny to produce a phylomorphospace and a phylochemospace. Our LM, SEM and FTIR analyses show clear morphological and chemical differences between the sister groups Peganum and Nitraria. Differences in the morphological and chemical characteristics of highland species (Nitraria schoberi, N. sphaerocarpa, N. sibirica and N. tangutorum) and lowland species (Nitraria billardierei and N. retusa) are very subtle, with phylogenetic history appearing to be a more important control on Nitraria pollen than local environmental conditions. Our approach shows a compelling consistency between the chemical and morphological characteristics of the eight studied Nitrariaceae species, and these traits are in agreement with the phylogenetic tree. Taken together, this demonstrates how novel methods for studying fossil pollen can facilitate the evolutionary investigation of living and extinct taxa, and the environments they represent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA