Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(15): 152501, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36269970

RESUMO

Absolute cross sections for the addition of s- and d-wave neutrons to ^{14}C and ^{14}N have been determined simultaneously via the (d,p) reaction at 10 MeV/u. The difference between the neutron and proton separation energies, ΔS, is around -20 MeV for the ^{14}C+n system and +8 MeV for ^{14}N+n. The population of the 1s_{1/2} and 0d_{5/2} orbitals for both systems is reduced by a factor of approximately 0.5 compared with the independent single-particle model, or about 0.6 when compared with the shell model. This finding strongly contrasts with results deduced from intermediate-energy knockout reactions between similar nuclei on targets of ^{9}Be and ^{12}C. The simultaneous technique used removes many systematic uncertainties.

2.
Phys Rev Lett ; 124(6): 062502, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32109128

RESUMO

The nuclei below lead but with more than 126 neutrons are crucial to an understanding of the astrophysical r process in producing nuclei heavier than A∼190. Despite their importance, the structure and properties of these nuclei remain experimentally untested as they are difficult to produce in nuclear reactions with stable beams. In a first exploration of the shell structure of this region, neutron excitations in ^{207}Hg have been probed using the neutron-adding (d,p) reaction in inverse kinematics. The radioactive beam of ^{206}Hg was delivered to the new ISOLDE Solenoidal Spectrometer at an energy above the Coulomb barrier. The spectroscopy of ^{207}Hg marks a first step in improving our understanding of the relevant structural properties of nuclei involved in a key part of the path of the r process.

3.
Nuklearmedizin ; 55(2): 41-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27067792

RESUMO

Over the last two decades, molecular imaging has been established as a valuable technology, aiming at visualization and characterization of biochemical processes on a molecular level in isolated cells, tissues and higher organisms. Within the wide scope of the various imaging techniques, dual-labelled modalities for nuclear (PET, SPECT) and near-infrared fluorescence (NIRF) imaging show promise owing to their comparable detection sensitivity. Novel materials offer excellent prospects for the development of new non-invasive strategies of early diagnosis and efficient monitoring of therapeutic treatments. In the field of cancer medicine, the combination of different imaging techniques such as PET/SPECT and OI for tracking down tumours and metastases, and subsequent image-guided surgery for tumour resection is particularly attractive. This review focuses on the development of promising dual-labelled agents to be applied in bimodal nuclear/optical imaging, combining radionuclides and fluorescent dyes. The discussion encompasses modular ligands as well as nanoscale systems, including antibodies and their fragments.


Assuntos
Corantes Fluorescentes/síntese química , Microscopia de Fluorescência/tendências , Nanopartículas/química , Imagem Óptica/tendências , Compostos Radiofarmacêuticos/química , Tomografia Computadorizada de Emissão/tendências , Imagem Molecular/tendências , Nanopartículas/ultraestrutura , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA