Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Gut ; 72(3): 560-572, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35918103

RESUMO

OBJECTIVE: A prophylactic vaccine is needed to control the HCV epidemic, with genotypes 1-3 causing >80% of worldwide infections. Vaccine development is hampered by HCV heterogeneity, viral escape including protection of conserved neutralising epitopes and suboptimal efficacy of HCV cell culture systems. We developed cell culture-based inactivated genotype 1-3 HCV vaccine candidates to present natively folded envelope proteins to elicit neutralising antibodies. DESIGN: High-yield genotype 1a, 2a and 3a HCV were developed by serial passage of TNcc, J6cc and DBN3acc in Huh7.5 cells and engineering of acquired mutations detected by next-generation sequencing. Neutralising epitope exposure was determined in cell-based neutralisation assays using human monoclonal antibodies AR3A and AR4A, and polyclonal antibody C211. BALB/c mice were immunised with processed and inactivated genotype 1a, 2a or 3a viruses using AddaVax, a homologue of the licenced adjuvant MF-59. Purified mouse and patient serum IgG were assayed for neutralisation capacity; mouse IgG and immune-sera were assayed for E1/E2 binding. RESULTS: Compared with the original viruses, high-yield viruses had up to ~1000 fold increased infectivity titres (peak titres: 6-7 log10 focus-forming units (FFU)/mL) and up to ~2470 fold increased exposure of conserved neutralising epitopes. Vaccine-induced IgG broadly neutralised genotype 1-6 HCV (EC50: 30-193 µg/mL; mean 71 µg/mL), compared favourably with IgG from chronically infected patients, and bound genotype 1-3 E1/E2; immune-sera endpoint titres reached up to 32 000. CONCLUSION: High-yield genotype 1-3 HCV could be developed as basis for inactivated vaccine candidates inducing broadly neutralising antibodies in mice supporting further preclinical development.


Assuntos
Hepatite C , Vacinas contra Hepatite Viral , Humanos , Animais , Camundongos , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Amplamente Neutralizantes/metabolismo , Epitopos/metabolismo , Genótipo , Imunoglobulina G , Hepacivirus/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
2.
J Hepatol ; 76(5): 1051-1061, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34990750

RESUMO

BACKGROUND & AIMS: A prophylactic vaccine is required to eliminate HCV as a global public health threat. We developed whole virus inactivated HCV vaccine candidates employing a licensed adjuvant. Further, we investigated the effects of HCV envelope protein modifications (to increase neutralization epitope exposure) on immunogenicity. METHODS: Whole virus vaccine antigen was produced in Huh7.5 hepatoma cells, processed using a multistep protocol and formulated with adjuvant (MF-59 analogue AddaVax or aluminium hydroxide). We investigated the capacity of IgG purified from the serum of immunized BALB/c mice to neutralize genotype 1-6 HCV (by virus neutralization assays) and to bind homologous envelope proteins (by ELISA). Viruses used for immunizations were (i) HCV5aHi with strain SA13 envelope proteins and modification of an O-linked glycosylation site in E2 (T385P), (ii) HCV5aHi(T385) with reversion of T385P to T385, featuring the original E2 sequence determined in vivo and (iii) HCV5aHi(ΔHVR1) with deletion of HVR1. For these viruses, epitope exposure was investigated using human monoclonal (AR3A and AR4A) and polyclonal (C211 and H06) antibodies in neutralization assays. RESULTS: Processed HCV5aHi formulated with AddaVax induced antibodies that efficiently bound homologous envelope proteins and broadly neutralized cultured genotype 1-6 HCV, with half maximal inhibitory concentrations of between 14 and 192 µg/ml (mean of 36 µg/ml against the homologous virus). Vaccination with aluminium hydroxide was less immunogenic. Compared to HCV5aHi(T385) with the original E2 sequence, HCV5aHi with a modified glycosylation site and HCV5aHi(ΔHVR1) without HVR1 showed increased neutralization epitope exposure but similar immunogenicity. CONCLUSION: Using an adjuvant suitable for human use, we developed inactivated whole HCV vaccine candidates that induced broadly neutralizing antibodies, which warrant investigation in further pre-clinical studies. LAY SUMMARY: A vaccine against hepatitis C virus (HCV) is needed to prevent the estimated 2 million new infections and 400,000 deaths caused by this virus each year. We developed inactivated whole HCV vaccine candidates using adjuvants licensed for human use, which, following immunization of mice, induced antibodies that efficiently neutralized all HCV genotypes with recognized epidemiological importance. HCV variants with modified envelope proteins exhibited similar immunogenicity as the virus with the original envelope proteins.


Assuntos
Hepatite C , Vacinas contra Hepatite Viral , Hidróxido de Alumínio/metabolismo , Animais , Anticorpos Neutralizantes , Antígenos Virais , Epitopos , Genótipo , Hepacivirus , Anticorpos Anti-Hepatite C , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Envelope Viral
3.
Hepatology ; 70(3): 771-787, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30964552

RESUMO

Protease inhibitors (PIs) are important components of treatment regimens for patients with chronic hepatitis C virus (HCV) infection. However, emergence and persistence of antiviral resistance could reduce their efficacy. Thus, defining resistance determinants is highly relevant for efforts to control HCV. Here, we investigated patterns of PI resistance-associated substitutions (RASs) for the major HCV genotypes and viral determinants for persistence of key RASs. We identified protease position 156 as a RAS hotspot for genotype 1-4, but not 5 and 6, escape variants by resistance profiling using PIs grazoprevir and paritaprevir in infectious cell culture systems. However, except for genotype 3, engineered 156-RASs were not maintained. For genotypes 1 and 2, persistence of 156-RASs depended on genome-wide substitution networks, co-selected under continued PI treatment and identified by next-generation sequencing with substitution linkage and haplotype reconstruction. Persistence of A156T for genotype 1 relied on compensatory substitutions increasing replication and assembly. For genotype 2, initial selection of A156V facilitated transition to 156L, persisting without compensatory substitutions. The developed genotype 1, 2, and 3 variants with persistent 156-RASs had exceptionally high fitness and resistance to grazoprevir, paritaprevir, glecaprevir, and voxilaprevir. A156T dominated in genotype 1 glecaprevir and voxilaprevir escape variants, and pre-existing A156T facilitated genotype 1 escape from clinically relevant combination treatments with grazoprevir/elbasvir and glecaprevir/pibrentasvir. In genotype 1 infected patients with treatment failure and 156-RASs, we observed genome-wide selection of substitutions under treatment. Conclusion: Comprehensive PI resistance profiling for HCV genotypes 1-6 revealed 156-RASs as key determinants of high-level resistance across clinically relevant PIs. We obtained in vitro proof of concept for persistence of highly fit genotype 1-3 156-variants, which might pose a threat to clinically relevant combination treatments.


Assuntos
Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Hepatite C Crônica/tratamento farmacológico , Inibidores de Proteases/uso terapêutico , 2-Naftilamina , Ácidos Aminoisobutíricos , Anilidas/uso terapêutico , Benzimidazóis/uso terapêutico , Carbamatos/uso terapêutico , Ciclopropanos , Dinamarca , Quimioterapia Combinada , Feminino , Genótipo , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepatite C Crônica/diagnóstico , Humanos , Lactamas Macrocíclicas , Leucina/análogos & derivados , Masculino , Prognóstico , Prolina/análogos & derivados , Inibidores de Proteases/farmacologia , Pirrolidinas , Quinoxalinas/uso terapêutico , Sulfonamidas/uso terapêutico , Uracila/análogos & derivados , Uracila/uso terapêutico , Valina
4.
Microbiol Spectr ; : e0254622, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719195

RESUMO

Two of the most important mechanisms of hepatitis C virus (HCV) immune evasion are the high variability of the amino acid sequence and epitope shielding via heavy glycosylation of the envelope (E) proteins. Previously, we showed that chimeric sHBsAg (hepatitis B virus [HBV] small surface antigen)-based virus-like particles (VLPs) carrying highly conserved epitope I from the HCV E2 glycoprotein (sHBsAg_412-425) elicit broadly neutralizing antibodies (bnAbs). However, many reports have identified escape mutations for such bnAbs that shift the N-glycosylation site from N417 to N415. This shift effectively masks the recognition of epitope I by antibodies raised against the wild-type glycoprotein. To investigate if glycan-shift-mediated immune evasion could be overcome by targeted vaccination strategies, we designed sHBsAg-based VLPs carrying epitope I with an N417S change (sHBsAg_N417S). Studies in BALB/c mice revealed that both sHBsAg_412-425 and sHBsAg_N417S VLPs were immunogenic, eliciting antibodies that recognized peptides encompassing epitope I regardless of the N417S change. However, we observed substantial differences in E1E2 glycoprotein binding and cell culture-derived HCV (HCVcc) neutralization between the sera elicited by sHBsAg_412-425 and those elicited by sHBsAg_N417S VLPs. Our results suggest a complex interplay among antibodies targeting epitope I, the E1E2 glycosylation status, and the epitope or global E1E2 conformation. Additionally, we observed striking similarities in the E1E2 glycoprotein binding patterns and HCVcc neutralization between sHBsAg_412-425 sera and AP33, suggesting that the immunization of mice with sHBsAg_412-425 VLPs can elicit AP33-like antibodies. This study emphasizes the role of antibodies against epitope I and represents an initial effort toward designing an antigen that elicits an immune response against epitope I with a glycan shift change. IMPORTANCE Epitope I, located within amino acids 412 to 423 of the HCV E2 glycoprotein, is an important target for an epitope-based HCV vaccine. One interesting feature of epitope I is the N417 glycosylation site, where a single change to S417 or T417 can shift the glycosylation site to position N415. This shift can effectively prevent the binding of broadly neutralizing antibodies targeting epitope I. Aiming to overcome glycan-shift-mediated immune evasion, we constructed sHBsAg_N417S VLPs carrying E2 epitope I, with N417S, and compared them with VLPs carrying wild-type epitope I. We show that antibodies elicited by the sHBsAg-based VLPs presenting two variants of the 412-425 epitope targeted two distinct glycan variants of the HCV E1E2 heterodimer. Our study suggests that due to the conformational flexibility of the E2 glycoprotein and epitope I, future vaccine antigens should elicit antibodies targeting more than one conformation and glycosylation variant of the 412-423 epitope.

5.
Viruses ; 15(9)2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37766376

RESUMO

Nirmatrelvir, which targets the SARS-CoV-2 main protease (Mpro), is the first-in-line drug for prevention and treatment of severe COVID-19, and additional Mpro inhibitors are in development. However, the risk of resistance development threatens the future efficacy of such direct-acting antivirals. To gain knowledge on viral correlates of resistance to Mpro inhibitors, we selected resistant SARS-CoV-2 under treatment with the nirmatrelvir-related protease inhibitor boceprevir. SARS-CoV-2 selected during five escape experiments in VeroE6 cells showed cross-resistance to nirmatrelvir with up to 7.3-fold increased half-maximal effective concentration compared to original SARS-CoV-2, determined in concentration-response experiments. Sequence analysis revealed that escape viruses harbored Mpro substitutions L50F and A173V. For reverse genetic studies, these substitutions were introduced into a cell-culture-infectious SARS-CoV-2 clone. Infectivity titration and analysis of genetic stability of cell-culture-derived engineered SARS-CoV-2 mutants showed that L50F rescued the fitness cost conferred by A173V. In the concentration-response experiments, A173V was the main driver of resistance to boceprevir and nirmatrelvir. Structural analysis of Mpro suggested that A173V can cause resistance by making boceprevir and nirmatrelvir binding less favorable. This study contributes to a comprehensive overview of the resistance profile of the first-in-line COVID-19 treatment nirmatrelvir and can thus inform population monitoring and contribute to pandemic preparedness.


Assuntos
Anti-Infecciosos , COVID-19 , Hepatite C Crônica , Humanos , Inibidores de Proteases/farmacologia , Antivirais/farmacologia , SARS-CoV-2/genética , Tratamento Farmacológico da COVID-19 , Inibidores Enzimáticos , Lactamas
6.
iScience ; 26(2): 105949, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36644321

RESUMO

Vaccines have relieved the public health burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and globally inactivated vaccines are most widely used. However, poor vaccination accessibility and waning immunity maintain the pandemic, driving emergence of variants. We developed an inactivated SARS-CoV-2 (I-SARS-CoV-2) vaccine based on a viral isolate with the Spike mutation D614G, produced in Vero cells in a scalable bioreactor, inactivated with ß-propiolactone, purified by membrane-based steric exclusion chromatography, and adjuvanted with MF59-like adjuvant AddaVax. I-SARS-CoV-2 and a derived split vaccine induced persisting neutralizing antibodies in mice; moreover, lyophilized antigen was immunogenic. Following homologous challenge, I-SARS-CoV-2 immunized hamsters were protected against disease and lung pathology. In contrast with reports for widely used vaccines, hamster plasma similarly neutralized the homologous and the Delta (B.1.617.2) variant viruses, whereas the Omicron (B.1.1.529) variant was neutralized less efficiently. Applied bioprocessing approaches offer advantages regarding scalability and production, potentially benefitting worldwide vaccine coverage.

7.
Vaccines (Basel) ; 10(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35214707

RESUMO

Hepatitis C virus (HCV) infections pose a major public health burden due to high chronicity rates and associated morbidity and mortality. A vaccine protecting against chronic infection is not available but would be important for global control of HCV infections. In this study, cell culture-based HCV production was established in a packed-bed bioreactor (CelCradle™) aiming to further the development of an inactivated whole virus vaccine and to facilitate virological and immunological studies requiring large quantities of virus particles. HCV was produced in human hepatoma-derived Huh7.5 cells maintained in serum-free medium on days of virus harvesting. Highest virus yields were obtained when the culture was maintained with two medium exchanges per day. However, increasing the total number of cells in the culture vessel negatively impacted infectivity titers. Peak infectivity titers of up to 7.2 log10 focus forming units (FFU)/mL, accumulated virus yields of up to 5.9 × 1010 FFU, and a cell specific virus yield of up to 41 FFU/cell were obtained from one CelCradle™. CelCradle™-derived and T flask-derived virus had similar characteristics regarding neutralization sensitivity and buoyant density. This packed-bed tide-motion system is available with larger vessels and may thus be a promising platform for large-scale HCV production.

8.
Sci Adv ; 8(51): eadd7197, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542720

RESUMO

The oral protease inhibitor nirmatrelvir is of key importance for prevention of severe coronavirus disease 2019 (COVID-19). To facilitate resistance monitoring, we studied severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) escape from nirmatrelvir in cell culture. Resistant variants harbored combinations of substitutions in the SARS-CoV-2 main protease (Mpro). Reverse genetics revealed that E166V and L50F + E166V conferred high resistance in infectious culture, replicon, and Mpro systems. While L50F, E166V, and L50F + E166V decreased replication and Mpro activity, L50F and L50F + E166V variants had high fitness in the infectious system. Naturally occurring L50F compensated for fitness cost of E166V and promoted viral escape. Molecular dynamics simulations revealed that E166V and L50F + E166V weakened nirmatrelvir-Mpro binding. Polymerase inhibitor remdesivir and monoclonal antibody bebtelovimab retained activity against nirmatrelvir-resistant variants, and combination with nirmatrelvir enhanced treatment efficacy compared to individual compounds. These findings have implications for monitoring and ensuring treatments with efficacy against SARS-CoV-2 and emerging sarbecoviruses.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , SARS-CoV-2/genética , Técnicas de Cultura de Células , Lactamas , Nitrilas
9.
Vaccines (Basel) ; 9(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209694

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has demonstrated the value of pursuing different vaccine strategies. Vaccines based on whole viruses, a widely used vaccine technology, depend on efficient virus production. This study aimed to establish SARS-CoV-2 production in the scalable packed-bed CelCradleTM 500-AP bioreactor. CelCradleTM 500-AP bottles with 0.5 L working volume and 5.5 g BioNOC™ II carriers were seeded with 1.5 × 108 Vero (WHO) cells, approved for vaccine production, in animal component-free medium and infected at a multiplicity of infection of 0.006 at a total cell number of 2.2-2.5 × 109 cells/bottle seven days post cell seeding. Among several tested conditions, two harvests per day and a virus production temperature of 33 °C resulted in the highest virus yield with a peak SARS-CoV-2 infectivity titer of 7.3 log10 50% tissue culture infectious dose (TCID50)/mL at 72 h post-infection. Six harvests had titers of ≥6.5 log10 TCID50/mL, and a total of 10.5 log10 TCID50 were produced in ~5 L. While trypsin was reported to enhance virus spread in cell culture, addition of 0.5% recombinant trypsin after infection did not improve virus yields. Overall, we demonstrated successful animal component-free production of SARS-CoV-2 in well-characterized Vero (WHO) cells in a scalable packed-bed bioreactor.

10.
Vaccines (Basel) ; 8(2)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532076

RESUMO

Hepatitis C virus (HCV) infection with associated chronic liver diseases is a major health problem worldwide. Here, we designed hepatitis B virus (HBV) small surface antigen (sHBsAg) virus-like particles (VLPs) presenting different epitopes derived from the HCV E2 glycoprotein (residues 412-425, 434-446, 502-520, and 523-535 of isolate H77C). Epitopes were selected based on their amino acid sequence conservation and were previously reported as targets of HCV neutralizing antibodies. Chimeric VLPs obtained in the Leishmania tarentolae expression system, in combination with the adjuvant Addavax, were used to immunize mice. Although all VLPs induced strong humoral responses, only antibodies directed against HCV 412-425 and 523-535 epitopes were able to react with the native E1E2 glycoprotein complexes of different HCV genotypes in ELISA. Neutralization assays against genotype 1-6 cell culture infectious HCV (HCVcc), revealed that only VLPs carrying the 412-425 epitope induced efficient HCV cross-neutralizing antibodies, but with isolate specific variations in efficacy that could not necessarily be explained by differences in epitope sequences. In contrast, antibodies targeting 434-446, 502-520, and 523-535 epitopes were not neutralizing HCVcc, highlighting the importance of conformational antibodies for efficient virus neutralization. Thus, 412-425 remains the most promising linear E2 epitope for further bivalent, rationally designed vaccine research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA