Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(8): 1424-1438, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36876921

RESUMO

Phages depend on their bacterial hosts to replicate. The habitat, density and genetic diversity of host populations are therefore key factors in phage ecology, but our ability to explore their biology depends on the isolation of a diverse and representative collection of phages from different sources. Here, we compared two populations of marine bacterial hosts and their phages collected during a time series sampling program in an oyster farm. The population of Vibrio crassostreae, a species associated specifically to oysters, was genetically structured into clades of near clonal strains, leading to the isolation of closely related phages forming large modules in phage-bacterial infection networks. For Vibrio chagasii, which blooms in the water column, a lower number of closely related hosts and a higher diversity of isolated phages resulted in small modules in the phage-bacterial infection network. Over time, phage load was correlated with V. chagasii abundance, indicating a role of host blooms in driving phage abundance. Genetic experiments further demonstrated that these phage blooms can generate epigenetic and genetic variability that can counteract host defence systems. These results highlight the importance of considering both the environmental dynamics and the genetic structure of the host when interpreting phage-bacteria networks.


Assuntos
Bacteriófagos , Vibrio , Vibrio/genética , Ecossistema , Estruturas Genéticas
2.
Genet Med ; 23(9): 1769-1778, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34040194

RESUMO

PURPOSE: Diseases caused by defects in mitochondrial DNA (mtDNA) maintenance machinery, leading to mtDNA deletions, form a specific group of disorders. However, mtDNA deletions also appear during aging, interfering with those resulting from mitochondrial disorders. METHODS: Here, using next-generation sequencing (NGS) data processed by eKLIPse and data mining, we established criteria distinguishing age-related mtDNA rearrangements from those due to mtDNA maintenance defects. MtDNA deletion profiles from muscle and urine patient samples carrying pathogenic variants in nuclear genes involved in mtDNA maintenance (n = 40) were compared with age-matched controls (n = 90). Seventeen additional patient samples were used to validate the data mining model. RESULTS: Overall, deletion number, heteroplasmy level, deletion locations, and the presence of repeats at deletion breakpoints were significantly different between patients and controls, especially in muscle samples. The deletion number was significantly relevant in adults, while breakpoint repeat lengths surrounding deletions were discriminant in young subjects. CONCLUSION: Altogether, eKLIPse analysis is a powerful tool for measuring the accumulation of mtDNA deletions between patients of different ages, as well as in prioritizing novel variants in genes involved in mtDNA stability.


Assuntos
Genoma Mitocondrial , Doenças Mitocondriais , Adulto , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Deleção de Sequência/genética
3.
Mol Biol Rep ; 47(5): 3779-3787, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32319008

RESUMO

Mitochondrial diseases are a clinically heterogeneous group of multisystemic disorders that arise as a result of various mitochondrial dysfunctions. Autosomal recessive aARS deficiencies represent a rapidly growing group of severe rare inherited mitochondrial diseases, involving multiple organs, and currently without curative option. They might be related to defects of mitochondrial aminoacyl t-RNA synthetases (mtARS) that are ubiquitous enzymes involved in mitochondrial aminoacylation and the translation process. Here, using NGS analysis of 281 nuclear genes encoding mitochondrial proteins, we identified 4 variants in different mtARS in three patients from unrelated Tunisian families, with clinical features of mitochondrial disorders. Two homozygous variants were found in KARS (c.683C>T) and AARS2 (c.1150-4C>G), respectively in two patients, while two heterozygous variants in EARS2 (c.486-7C>G) and DARS2 (c.1456C>T) were concomitantly found in the third patient. Bio-informatics investigations predicted their pathogenicity and deleterious effects on pre-mRNA splicing and on protein stability. Thus, our results suggest that mtARS mutations are common in Tunisian patients with mitochondrial diseases.


Assuntos
Alanina-tRNA Ligase/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Alanina-tRNA Ligase/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Humanos , Masculino , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação/genética , Linhagem
4.
Hum Mutat ; 40(7): 839-841, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30977936

RESUMO

The pLI score reflects the tolerance of a given gene to the loss of function on the basis of the number of protein truncating variants, that is, the frameshift, splice donor, splice acceptor, and stop-gain variants referenced for this gene in control databases weighted by the size of the gene and the sequencing coverage. It is frequently used to prioritize candidate genes when analyzing whole exome or whole genome data. We list here the main pitfalls to consider before using this score. Concrete illustrations are given for each of these pitfalls.


Assuntos
Biologia Computacional/métodos , Mutação com Perda de Função , Proteínas/genética , Análise de Sequência de DNA/métodos , Códon sem Sentido , Mutação da Fase de Leitura , Humanos , Mutação de Sentido Incorreto , Sítios de Splice de RNA , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
5.
J Cell Sci ; 130(11): 1940-1951, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28424233

RESUMO

Mitochondrial dynamics and distribution are critical for supplying ATP in response to energy demand. CLUH is a protein involved in mitochondrial distribution whose dysfunction leads to mitochondrial clustering, the metabolic consequences of which remain unknown. To gain insight into the role of CLUH on mitochondrial energy production and cellular metabolism, we have generated CLUH-knockout cells using CRISPR/Cas9. Mitochondrial clustering was associated with a smaller cell size and with decreased abundance of respiratory complexes, resulting in oxidative phosphorylation (OXPHOS) defects. This energetic impairment was found to be due to the alteration of mitochondrial translation and to a metabolic shift towards glucose dependency. Metabolomic profiling by mass spectroscopy revealed an increase in the concentration of some amino acids, indicating a dysfunctional Krebs cycle, and increased palmitoylcarnitine concentration, indicating an alteration of fatty acid oxidation, and a dramatic decrease in the concentrations of phosphatidylcholine and sphingomyeline, consistent with the decreased cell size. Taken together, our study establishes a clear function for CLUH in coupling mitochondrial distribution to the control of cell energetic and metabolic status.


Assuntos
Ciclo do Ácido Cítrico/genética , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas de Ligação a RNA/metabolismo , Trifosfato de Adenosina/biossíntese , Sistemas CRISPR-Cas , Ciclo do Ácido Cítrico/efeitos dos fármacos , Dano ao DNA , DNA Mitocondrial/metabolismo , Etídio/toxicidade , Deleção de Genes , Células HeLa , Humanos , Metabolômica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/efeitos dos fármacos , Imagem Óptica , Oxirredução , Fosforilação Oxidativa/efeitos dos fármacos , Palmitoilcarnitina/metabolismo , Fosfatidilcolinas/metabolismo , Proteínas de Ligação a RNA/genética
6.
Genet Med ; 21(6): 1407-1416, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30393377

RESUMO

PURPOSE: Accurate detection of mitochondrial DNA (mtDNA) alterations is essential for the diagnosis of mitochondrial diseases. The development of high-throughput sequencing technologies has enhanced the detection sensitivity of mtDNA pathogenic variants, but the detection of mtDNA rearrangements, especially multiple deletions, is still poorly processed. Here, we present eKLIPse, a sensitive and specific tool allowing the detection and quantification of large mtDNA rearrangements from single and paired-end sequencing data. METHODS: The methodology was first validated using a set of simulated data to assess the detection sensitivity and specificity, and second with a series of sequencing data from mitochondrial disease patients carrying either single or multiple deletions, related to pathogenic variants in nuclear genes involved in mtDNA maintenance. RESULTS: eKLIPse provides the precise breakpoint positions and the cumulated percentage of mtDNA rearrangements at a given gene location with a detection sensitivity lower than 0.5% mutant. eKLIPse software is available either as a script to be integrated in a bioinformatics pipeline, or as user-friendly graphical interface to visualize the results through a Circos representation ( https://github.com/dooguypapua/eKLIPse ). CONCLUSION: Thus, eKLIPse represents a useful resource to study the causes and consequences of mtDNA rearrangements, for further genotype/phenotype correlations in mitochondrial disorders.


Assuntos
DNA Mitocondrial/genética , Análise de Sequência de DNA/métodos , Deleção de Sequência/genética , Sequência de Bases/genética , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Software
7.
Environ Microbiol ; 17(4): 1152-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24919412

RESUMO

Vibrio tasmaniensis LGP32, a facultative intracellular pathogen of oyster haemocytes, was shown here to release outer membrane vesicles (OMVs) both in the extracellular milieu and inside haemocytes. Intracellular release of OMVs occurred inside phagosomes of intact haemocytes having phagocytosed few vibrios as well as in damaged haemocytes containing large vacuoles heavily loaded with LGP32. The OMV proteome of LGP32 was shown to be rich in hydrolases (25%) including potential virulence factors such as proteases, lipases, phospholipases, haemolysins and nucleases. One major caseinase/gelatinase named Vsp for vesicular serine protease was found to be specifically secreted through OMVs in which it is enclosed. Vsp was shown to participate in the virulence phenotype of LGP32 in oyster experimental infections. Finally, OMVs were highly protective against antimicrobial peptides, increasing the minimal inhibitory concentration of polymyxin B by 16-fold. Protection was conferred by OMV titration of polymyxin B but did not depend on the activity of Vsp or another OMV-associated protease. Altogether, our results show that OMVs contribute to the pathogenesis of LGP32, being able to deliver virulence factors to host immune cells and conferring protection against antimicrobial peptides.


Assuntos
Ostreidae/microbiologia , Vacúolos/microbiologia , Vibrio/patogenicidade , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Farmacorresistência Bacteriana , Gelatinases/biossíntese , Proteínas Hemolisinas/biossíntese , Metaloendopeptidases/biossíntese , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Ostreidae/imunologia , Fagossomos/microbiologia , Polimixina B/farmacologia , Serina Endopeptidases/biossíntese , Serina Proteases/biossíntese , Vibrio/genética
8.
Environ Microbiol ; 17(11): 4189-99, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25384557

RESUMO

Oyster diseases caused by pathogenic vibrios pose a major challenge to the sustainability of oyster farming. In France, since 2012 a disease affecting specifically adult oysters has been associated with the presence of Vibrio aestuarianus. Here, by combining genome comparison, phylogenetic analyses and high-throughput infections of strains isolated before or during the recent outbreaks, we show that virulent strains cluster into two V. aestuarianus lineages independently of the sampling dates. The bacterial lethal dose was not different between strains isolated before or after 2012. Hence, the emergence of a new highly virulent clonal strain is unlikely. Each lineage comprises nearly identical strains, the majority of them being virulent, suggesting that within these phylogenetically coherent virulent lineages a few strains have lost their pathogenicity. Comparative genomics allowed the identification of a single frameshift in a non-virulent strain. This mutation affects the varS gene that codes for a signal transduction histidine-protein kinase. Genetic analyses confirmed that varS is necessary for infection of oysters and for a secreted metalloprotease expression. For the first time in a Vibrio species, we show here that VarS is a key factor of pathogenicity.


Assuntos
Genes Reguladores , Ostreidae/microbiologia , Proteínas Quinases/genética , Vibrio/genética , Vibrio/patogenicidade , Animais , Mutação da Fase de Leitura/genética , França , Genes Reguladores/genética , Genômica , Filogenia , Virulência/genética
9.
Appl Microbiol Biotechnol ; 98(24): 10165-76, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25273176

RESUMO

Vibrio diabolicus, a marine bacterium originating from deep-sea hydrothermal vents, produces the HE800 exopolysaccharide with high value for biotechnological purposes, especially for human health. Its genome was sequenced and analyzed; phylogenetic analysis using the core genome revealed V. diabolicus is close to another deep-sea Vibrio sp. (Ex25) within the Harveyi clade and Alginolyticus group. A genetic locus homologous to the syp cluster from Vibrio fischeri was demonstrated to be involved in the HE800 production. However, few genetic particularities suggest that the regulation of syp expression may be different in V. diabolicus. The presence of several types of glycosyltransferases within the locus indicates a capacity to generate diversity in the glycosidic structure, which may confer an adaptability to environmental conditions. These results contribute to better understanding exopolysaccharide biosynthesis and for developing new efficient processes to produce this molecule for biotechnological applications.


Assuntos
Vias Biossintéticas , DNA Bacteriano/genética , Loci Gênicos , Genoma Bacteriano , Polissacarídeos/biossíntese , Análise de Sequência de DNA , Vibrio/genética , Análise por Conglomerados , DNA Bacteriano/química , Dados de Sequência Molecular , Filogenia , Água do Mar/microbiologia , Homologia de Sequência , Vibrio/isolamento & purificação
10.
Nat Commun ; 15(1): 664, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253718

RESUMO

Phage satellites are bacterial genetic elements that co-opt phage machinery for their own dissemination. Here we identify a family of satellites, named Phage-Inducible Chromosomal Minimalist Islands (PICMIs), that are broadly distributed in marine bacteria of the family Vibrionaceae. A typical PICMI is characterized by reduced gene content, does not encode genes for capsid remodelling, and packages its DNA as a concatemer. PICMIs integrate in the bacterial host genome next to the fis regulator, and encode three core proteins necessary for excision and replication. PICMIs are dependent on virulent phage particles to spread to other bacteria, and protect their hosts from other competitive phages without interfering with their helper phage. Thus, our work broadens our understanding of phage satellites and narrows down the minimal number of functions necessary to hijack a tailed phage.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Capsídeo , Proteínas do Capsídeo , Genoma Bacteriano
11.
Biomedicines ; 10(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892686

RESUMO

HIV-exposed uninfected (HEU) children show impaired health outcomes during childhood. A high rate of mitochondrial DNA (mtDNA) instability was reported in the blood of HEU at birth. We aimed to explore the relationship between these health outcomes and mtDNA deletions over time in a case series of 24 HEU children. MtDNA instability was assessed by deep sequencing and analyzed by eKLIPse-v2 algorithm at three time points, namely birth, 1 year, and 6 years of age. Association between mtDNA deletion and health outcomes, including growth, clinical, and neurodevelopmental parameters, were explored using univariate statistical analyses and after stratification with relevant variables. HEU children were selected with an equal male:female ratio. An elevated number of mtDNA deletions and duplications events was observed at 7 days' post-partum. Median heteroplasmy increased at one year of life and then returned to baseline by six years of age. The mtDNA instability was acquired and was not transmitted by the mother. No risk factors were significantly associated with mtDNA instability. In this small case series, we did not detect any association between any health outcome at 6 years and mtDNA instability measures. A significant effect modification of the association between the duration of maternal prophylaxis and child growth was observed after stratification with heteroplasmy rate. Genomic instability persists over time among HEU children but, despite its extension, stays subclinical at six years.

12.
Genes (Basel) ; 13(7)2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35885985

RESUMO

Dominant Optic Atrophy (DOA) is one of the most common inherited mitochondrial diseases, leading to blindness. It is caused by the chronic degeneration of the retinal ganglion cells (RGCs) and their axons forming the optic nerve. Until now, DOA has been mainly associated with genes encoding proteins involved in mitochondrial network dynamics. Using next-generation and exome sequencing, we identified for the first time heterozygous PMPCA variants having a causative role in the pathology of late-onset primary DOA in five patients. PMPCA encodes an α subunit of the mitochondrial peptidase (MPP), responsible for the cleavage and maturation of the mitochondrial precursor proteins imported from the cytoplasm into mitochondria. Recently, PMPCA has been identified as the gene responsible for Autosomal Recessive Cerebellar Ataxia type 2 (SCAR2) and another severe recessive mitochondrial disease. In this study, four PMPCA variants were identified, two are frameshifts (c.309delA and c.820delG) classified as pathogenic and two are missenses (c.1363G>A and c.1547G>A) classified with uncertain pathological significance. Functional assays on patients' fibroblasts show a hyperconnection of the mitochondrial network and revealed that frameshift variants reduced α-MPP levels, while not significantly affecting the respiratory machinery. These results suggest that alterations in mitochondrial peptidase function can affect the fusion-fission balance, a key element in maintaining the physiology of retinal ganglion cells, and consequently lead to their progressive degeneration.


Assuntos
Doenças Mitocondriais , Atrofia Óptica Autossômica Dominante , Humanos , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Mitocondriais/genética , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/metabolismo , Atrofia Óptica Autossômica Dominante/patologia , Peptídeo Hidrolases , Peptidase de Processamento Mitocondrial
13.
Mitochondrion ; 64: 19-26, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35189384

RESUMO

Cancer/Testis Antigens (CTAs) represent a group of proteins whose expression under physiological conditions is restricted to testis but activated in many human cancers. Also, it was observed that co-expression of multiple CTAs worsens the patient prognosis. Five CTAs were reported acting in mitochondria and we recently reported 147 transcripts encoded by 67 CTAs encoding for proteins potentially targeted to mitochondria. Among them, we identified the two isoforms encoded by CT55 for whom the function is poorly understood. First, we found that patients with tumors expressing wild-type CT55 are associated with poor survival. Moreover, CT55 silencing decreases dramatically cell proliferation. Second, to investigate the role of CT55 on mitochondria, we first show that CT55 is localized to both mitochondria and endoplasmic reticulum (ER) due to the presence of an ambiguous N-terminal targeting signal. Then, we show that CT55 silencing decreases mtDNA copy number and delays mtDNA recovery after an acute depletion. Moreover, demethylation of CT55 promotor increases its expression, which in turn increases mtDNA copy number. Finally, we measured the mtDNA copy number in NCI-60 cell lines and screened for genes whose expression is strongly correlated to mtDNA amount. We identified CT55 as the second highest correlated hit. Also, we show that compared to siRNA scrambled control (siCtrl) treatment, CT55 specific siRNA (siCT55) treatment down-regulates aerobic respiration, indicating that CT55 sustains mitochondrial respiration. Altogether, these data show for first time that CT55 acts on mtDNA copy number, modulates mitochondrial activity to sustain cancer cell proliferation.


Assuntos
DNA Mitocondrial , Neoplasias , Proliferação de Células , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , RNA Interferente Pequeno , Testículo/metabolismo
14.
Biosci Rep ; 42(9)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36093993

RESUMO

Mitochondrial cytopathies, among which the Leigh syndrome (LS), are caused by variants either in the mitochondrial or the nuclear genome, affecting the oxidative phosphorylation process. The aim of the present study consisted in defining the molecular diagnosis of a group of Tunisian patients with LS. Six children, belonging to five Tunisian families, with clinical and imaging presentations suggestive of LS were recruited. Whole mitochondrial DNA and targeted next-generation sequencing of a panel of 281 nuclear genes involved in mitochondrial physiology were performed. Bioinformatic analyses were achieved in order to identify deleterious variations. A single m.10197G>A (p.Ala47Thr) variant was found in the mitochondrial MT-ND3 gene in one patient, while the others were related to autosomal homozygous variants: two c.1412delA (p.Gln471ArgfsTer42) and c.1264A>G (p.Thr422Ala) in SLC19A3, one c.454C>G (p.Pro152Ala) in SLC25A19 and one c.122G>A (p.Gly41Asp) in ETHE1. Our findings demonstrate the usefulness of genomic investigations to improve LS diagnosis in consanguineous populations and further allow for treating the patients harboring variants in SLC19A3 and SLC25A19 that contribute to thiamine transport, by thiamine and biotin supplementation. Considering the Tunisian genetic background, the newly identified variants could be screened in patients with similar clinical presentation in related populations.


Assuntos
Doença de Leigh , Biotina/genética , Criança , DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Leigh/diagnóstico , Doença de Leigh/genética , Doença de Leigh/terapia , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Mitocondriais/genética , Mutação , Proteínas de Transporte Nucleocitoplasmático/genética , Tiamina
15.
Nat Microbiol ; 7(7): 1075-1086, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35760840

RESUMO

Coevolution between bacteriophages (phages) and their bacterial hosts occurs through changes in resistance and counter-resistance mechanisms. To assess phage-host evolution in wild populations, we isolated 195 Vibrio crassostreae strains and 243 vibriophages during a 5-month time series from an oyster farm and combined these isolates with existing V. crassostreae and phage isolates. Cross-infection studies of 81,926 host-phage pairs delineated a modular network where phages are best at infecting co-occurring hosts, indicating local adaptation. Successful propagation of phage is restricted by the ability to adsorb to closely related bacteria and further constrained by strain-specific defence systems. These defences are highly diverse and predominantly located on mobile genetic elements, and multiple defences are active within a single genome. We further show that epigenetic and genomic modifications enable phage to adapt to bacterial defences and alter host range. Our findings reveal that the evolution of bacterial defences and phage counter-defences is underpinned by frequent genetic exchanges with, and between, mobile genetic elements.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Especificidade de Hospedeiro
16.
Biomedicines ; 10(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35884972

RESUMO

(1) Background: The development of mitochondrial medicine has been severely impeded by a lack of effective therapies. (2) Methods: To better understand Mitochondrial Encephalopathy Lactic Acidosis Syndrome Stroke-like episodes (MELAS) syndrome, neuronal cybrid cells carrying different mutation loads of the m.3243A > G mitochondrial DNA variant were analysed using a multi-omic approach. (3) Results: Specific metabolomic signatures revealed that the glutamate pathway was significantly increased in MELAS cells with a direct correlation between glutamate concentration and the m.3243A > G heteroplasmy level. Transcriptomic analysis in mutant cells further revealed alterations in specific gene clusters, including those of the glutamate, gamma-aminobutyric acid pathways, and tricarboxylic acid (TCA) cycle. These results were supported by post-mortem brain tissue analysis from a MELAS patient, confirming the glutamate dysregulation. Exposure of MELAS cells to ketone bodies significantly reduced the glutamate level and improved mitochondrial functions, reducing the accumulation of several intermediate metabolites of the TCA cycle and alleviating the NADH-redox imbalance. (4) Conclusions: Thus, a multi-omic integrated approach to MELAS cells revealed glutamate as a promising disease biomarker, while also indicating that a ketogenic diet should be tested in MELAS patients.

17.
BMC Microbiol ; 11: 105, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21575179

RESUMO

BACKGROUND: Superoxide reductases (SOR) catalyse the reduction of superoxide anions to hydrogen peroxide and are involved in the oxidative stress defences of anaerobic and facultative anaerobic organisms. Genes encoding SOR were discovered recently and suffer from annotation problems. These genes, named sor, are short and the transfer of annotations from previously characterized neelaredoxin, desulfoferrodoxin, superoxide reductase and rubredoxin oxidase has been heterogeneous. Consequently, many sor remain anonymous or mis-annotated. DESCRIPTION: SORGOdb is an exhaustive database of SOR that proposes a new classification based on domain architecture. SORGOdb supplies a simple user-friendly web-based database for retrieving and exploring relevant information about the proposed SOR families. The database can be queried using an organism name, a locus tag or phylogenetic criteria, and also offers sequence similarity searches using BlastP. Genes encoding SOR have been re-annotated in all available genome sequences (prokaryotic and eukaryotic (complete and in draft) genomes, updated in May 2010). CONCLUSIONS: SORGOdb contains 325 non-redundant and curated SOR, from 274 organisms. It proposes a new classification of SOR into seven different classes and allows biologists to explore and analyze sor in order to establish correlations between the class of SOR and organism phenotypes. SORGOdb is freely available at http://sorgo.genouest.org/index.php.


Assuntos
Bases de Dados Genéticas , Oxirredutases/genética , Oxirredutases/química , Oxirredutases/classificação , Estrutura Terciária de Proteína
18.
Mitochondrion ; 56: 73-81, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220498

RESUMO

Cancer/Testis Antigens (CTAs) genes are expressed only during spermatogenesis and tumorigenesis. Both processes share common specific metabolic adaptation related to energy supply, with a glucose to lactate gradient, leading to changes in mitochondrial physiology paralleling CTAs expression. In this review, we address the role of CTAs in mitochondria (mitoCTAs), by reviewing all published data, and assessing the putative localization of CTAs by screening for the presence of a mitochondrial targeting sequence (MTS). We evidenced that among the 276 CTAs, five were already shown to interfere with mitochondrial activities and 67 display a potential MTS.


Assuntos
Antígenos de Neoplasias/genética , Mitocôndrias/metabolismo , Neoplasias/genética , Espermatogênese , Antígenos de Neoplasias/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Mitocôndrias/genética , Neoplasias/metabolismo , Testículo/metabolismo
19.
Front Neurol ; 12: 602979, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841295

RESUMO

Advances in next-generation sequencing (NGS) facilitate the diagnosis of genetic disorders. To evaluate its use for the molecular diagnosis of inherited optic neuropathy (ION), a blinding disease caused by the degeneration of retinal ganglion cells, we performed genetic analysis using targeted NGS of 22 already known and candidate genes in a cohort of 1,102 affected individuals. The panel design, library preparation, and sequencing reactions were performed using the Ion AmpliSeq technology. Pathogenic variants were detected in 16 genes in 245 patients (22%), including 186 (17%) and 59 (5%) dominant and recessive cases, respectively. Results confirmed that OPA1 variants are responsible for the majority of dominant IONs, whereas ACO2 and WFS1 variants are also frequently involved in both dominant and recessive forms of ION. All pathogenic variants were found in genes encoding proteins involved in the mitochondrial function, highlighting the importance of mitochondria in the survival of retinal ganglion cells.

20.
Ann Biol Clin (Paris) ; 79(1): 28-40, 2021 Feb 01.
Artigo em Francês | MEDLINE | ID: mdl-33586649

RESUMO

The molecular study of mitochondrial diseases, essential for diagnosis, is special due to the dual genetic origin of these pathologies: mitochondrial DNA and nuclear DNA. Complete mtDNA sequencing still remains the first line diagnostic test followed if negative, by resequencing panels of several hundred mitochondrially-encoded nuclear genes. This strategy, with an initial entire mtDNA sequencing, is currently justified by the presence of nuclear mitochondrial DNA sequences (NUMTs) in the nuclear genome. We designed a resequencing panel combining the mtDNA and 135 nuclear genes which was evaluated compared to the performances of the standard mtDNA sequencing. Method validation was performed on the reading depth and reproducibility of the results. Thirty patients were analyzed by both methods. We were able to demonstrate that NUMTs did not impact the mtDNA sequencing quality, as the identified variants and mutant loads were identical with the reference mtDNA sequencing method. Reading depths were higher than the recommendations of the MitoDiag French diagnostic network, for the entire mtDNA for muscle and for 70% of the mtDNA for blood. These results highlight the usefulness of combining both mtDNA and mitochondrially nuclear-encoded genes and thus obtain more complete results and faster turnaround time for mitochondrial disease patients.


Assuntos
Genoma Mitocondrial , Doenças Mitocondriais , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Humanos , Mitocôndrias , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA