Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Biol ; 15(5): e1002605, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28549068

RESUMO

In the vertebrate nervous system, myelination of axons for rapid impulse propagation requires the synthesis of large amounts of lipids and proteins by oligodendrocytes and Schwann cells. Myelin membranes are thought to be cell-autonomously assembled by these axon-associated glial cells. Here, we report the surprising finding that in normal brain development, a substantial fraction of the lipids incorporated into central nervous system (CNS) myelin are contributed by astrocytes. The oligodendrocyte-specific inactivation of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP), an essential coactivator of the transcription factor SREBP and thus of lipid biosynthesis, resulted in significantly retarded CNS myelination; however, myelin appeared normal at 3 months of age. Importantly, embryonic deletion of the same gene in astrocytes, or in astrocytes and oligodendrocytes, caused a persistent hypomyelination, as did deletion from astrocytes during postnatal development. Moreover, when astroglial lipid synthesis was inhibited, oligodendrocytes began incorporating circulating lipids into myelin membranes. Indeed, a lipid-enriched diet was sufficient to rescue hypomyelination in these conditional mouse mutants. We conclude that lipid synthesis by oligodendrocytes is heavily supplemented by astrocytes in vivo and that horizontal lipid flux is a major feature of normal brain development and myelination.


Assuntos
Astrócitos/metabolismo , Doenças Desmielinizantes/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Astrócitos/patologia , Astrócitos/ultraestrutura , Biomarcadores/metabolismo , Cruzamentos Genéticos , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/prevenção & controle , Dieta Hiperlipídica , Ácido Graxo Sintase Tipo I/metabolismo , Deleção de Genes , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Mutação , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/patologia , Oligodendroglia/ultraestrutura , Especificidade de Órgãos , Processamento de Proteína Pós-Traducional , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
2.
Cells ; 9(9)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961889

RESUMO

Myelination greatly increases the speed of action potential propagation of neurons, thereby enhancing the efficacy of inter-neuronal communication and hence, potentially, optimizing the brain's signal processing capability. The impact of genetic variation on the extent of axonal myelination and its consequences for brain functioning remain to be determined. Here we investigated this question using a genetic reference panel (GRP) of mouse BXD recombinant inbred (RI) strains, which partly model genetic diversity as observed in human populations, and which show substantial genetic differences in a variety of behaviors, including learning, memory and anxiety. We found coherent differences in the expression of myelin genes in brain tissue of RI strains of the BXD panel, with the largest differences in the hippocampus. The parental C57BL/6J (C57) and DBA/2J (DBA) strains were on opposite ends of the expression spectrum, with C57 showing higher myelin transcript expression compared with DBA. Our experiments showed accompanying differences between C57 and DBA in myelin protein composition, total myelin content, and white matter conduction velocity. Finally, the hippocampal myelin gene expression of the BXD strains correlated significantly with behavioral traits involving anxiety and/or activity. Taken together, our data indicate that genetic variation in myelin gene expression translates to differences observed in myelination, axonal conduction speed, and possibly in anxiety/activity related behaviors.


Assuntos
Ansiedade/genética , Variação Genética , Hipocampo/metabolismo , Bainha de Mielina/genética , Neurônios/metabolismo , Transcriptoma , Animais , Ansiedade/metabolismo , Biomarcadores/metabolismo , Comportamento de Escolha/fisiologia , Cognição/fisiologia , Cruzamentos Genéticos , Feminino , Regulação da Expressão Gênica , Locomoção/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Bainha de Mielina/metabolismo , Neurônios/citologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Especificidade da Espécie , Substância Branca/metabolismo
3.
Eur J Hum Genet ; 24(3): 381-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26014434

RESUMO

Disruptions in white matter (WM) tract structures have been implicated consistently in the pathophysiology of schizophrenia. Global WM integrity--as measured by fractional anisotropy (FA)--is highly heritable and may provide a good endophenotype for genetic studies of schizophrenia. WM abnormalities in schizophrenia are not localized to one specific brain region but instead reflect global low-level decreases in FA coupled with focal abnormalities. In this study, we sought to investigate whether functional gene sets associated with schizophrenia are also associated with WM integrity. We analyzed FA and genetic data from the Mind Research Network Clinical Imaging Consortium to study the effect of multiple oligodendrocyte gene sets on schizophrenia and WM integrity using a functional gene set analysis in 77 subjects with schizophrenia and 104 healthy controls. We found that a gene set involved in myelination was significantly associated with schizophrenia and FA. This gene set includes 17 genes that are expressed in oligodendrocytes and one neuronal gene (NRG1) that is known to regulate myelination. None of the genes within the gene set were associated with schizophrenia or FA individually, suggesting that no single gene was driving the association of the gene set. Our findings support the hypothesis that multiple genetic variants in myelination-related genes contribute to the observed correlation between schizophrenia and decreased WM integrity as measured by FA.


Assuntos
Bainha de Mielina/genética , Bainha de Mielina/patologia , Esquizofrenia/genética , Substância Branca/patologia , Adulto , Anisotropia , Feminino , Estudos de Associação Genética , Humanos , Masculino , Oligodendroglia/patologia , Polimorfismo de Nucleotídeo Único/genética
4.
Eur J Hum Genet ; 23(11): 1519-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25735483

RESUMO

Tourette syndrome is a heritable neurodevelopmental disorder whose pathophysiology remains unknown. Recent genome-wide association studies suggest that it is a polygenic disorder influenced by many genes of small effect. We tested whether these genes cluster in cellular function by applying gene-set analysis using expert curated sets of brain-expressed genes in the current largest available Tourette syndrome genome-wide association data set, involving 1285 cases and 4964 controls. The gene sets included specific synaptic, astrocytic, oligodendrocyte and microglial functions. We report association of Tourette syndrome with a set of genes involved in astrocyte function, specifically in astrocyte carbohydrate metabolism. This association is driven primarily by a subset of 33 genes involved in glycolysis and glutamate metabolism through which astrocytes support synaptic function. Our results indicate for the first time that the process of astrocyte-neuron metabolic coupling may be an important contributor to Tourette syndrome pathogenesis.


Assuntos
Astrócitos/patologia , Predisposição Genética para Doença , Microglia/patologia , Síndrome de Tourette/genética , Astrócitos/metabolismo , Estudo de Associação Genômica Ampla , Genótipo , Ácido Glutâmico , Humanos , Microglia/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Síndrome de Tourette/metabolismo , Síndrome de Tourette/fisiopatologia
5.
Front Cell Neurosci ; 8: 12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24523672

RESUMO

Over the last decade, the importance of astrocyte-neuron communication in neuronal development and synaptic plasticity has become increasingly clear. Since neuron-astrocyte interactions represent highly dynamic and reciprocal processes, we hypothesized that many astrocyte genes may be regulated as a consequence of their interactions with maturing neurons. In order to identify such neuron-responsive astrocyte genes in vitro, we sought to establish an expedited technique for separation of neurons from co-cultured astrocytes. Our newly established method makes use of cold jet, which exploits different adhesion characteristics of subpopulations of cells (Jirsova etal., 1997), and is rapid, performed under ice-cold conditions and avoids protease-mediated isolation of astrocytes or time-consuming centrifugation, yielding intact astrocyte mRNA with approximately 90% of neuronal RNA removed. Using this purification method, we executed genome-wide profiling in which RNA derived from astrocyte-only cultures was compared with astrocyte RNA derived from differentiating neuron-astrocyte co-cultures. Data analysis determined that many astrocytic mRNAs and biological processes are regulated by neuronal interaction. Our results validate the cold jet as an efficient method to separate astrocytes from neurons in co-culture, and reveals that neurons induce robust gene-expression changes in co-cultured astrocytes.

6.
Schizophr Bull ; 40(4): 925-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23956119

RESUMO

Schizophrenia is a highly polygenic brain disorder. The main hypothesis for disease etiology in schizophrenia primarily focuses on the role of dysfunctional synaptic transmission. Previous studies have therefore directed their investigations toward the role of neuronal dysfunction. However, recent studies have shown that apart from neurons, glial cells also play a major role in synaptic transmission. Therefore, we investigated the potential causal involvement of the 3 principle glial cell lineages in risk to schizophrenia. We performed a functional gene set analysis to test for the combined effects of genetic variants in glial type-specific genes for association with schizophrenia. We used genome-wide association data from the largest schizophrenia sample to date, including 13 689 cases and 18 226 healthy controls. Our results show that astrocyte and oligodendrocyte gene sets, but not microglia gene sets, are associated with an increased risk for schizophrenia. The astrocyte and oligodendrocyte findings are related to astrocyte signaling at the synapse, myelin membrane integrity, glial development, and epigenetic control. Together, these results show that genetic alterations underlying specific glial cell type functions increase susceptibility to schizophrenia and provide evidence that the neuronal hypothesis of schizophrenia should be extended to include the role of glia.


Assuntos
Astrócitos/metabolismo , Microglia/metabolismo , Oligodendroglia/metabolismo , Esquizofrenia/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Neuroglia/metabolismo , Esquizofrenia/metabolismo
7.
Brain Pathol ; 24(2): 152-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24033473

RESUMO

The olfactory bulb (OB) is affected early in both Parkinson's (PD) and Alzheimer's disease (AD), evidenced by the presence of disease-specific protein aggregates and an early loss of olfaction. Whereas previous studies showed amoeboid microglia in the classically affected brain regions of PD and AD patients, little was known about such changes in the OB. Using a morphometric approach, a significant increase in amoeboid microglia density within the anterior olfactory nucleus (AON) of AD and PD patients was observed. These amoeboid microglia cells were in close apposition to ß-amyloid, hyperphosphorylated tau or α-synuclein deposits, but no uptake of pathological proteins by microglia could be visualized. Subsequent analysis showed (i) no correlation between microglia and α-synuclein (PD), (ii) a positive correlation with ß-amyloid (AD), and (iii) a negative correlation with hyperphosphorylated tau (AD). Furthermore, despite the observed pathological alterations in neurite morphology, neuronal loss was not apparent in the AON of both patient groups. Thus, we hypothesize that, in contrast to the classically affected brain regions of AD and PD patients, within the AON rather than neuronal loss, the increased density in amoeboid microglial cells, possibly in combination with neurite pathology, may contribute to functional deficits.


Assuntos
Doença de Alzheimer/patologia , Microglia/patologia , Neurônios/patologia , Bulbo Olfatório/patologia , Doença de Parkinson/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Contagem de Células , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Bulbo Olfatório/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA