Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 93(2): 683-690, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33319979

RESUMO

Immunoassays have been used for decades in clinical laboratories to quantify proteins in serum and plasma samples. However, their limitations make them inappropriate in some cases. Recently, mass spectrometry (MS) based proteomics analysis has emerged as a promising alternative method when seeking to assess panels of protein biomarkers with a view to providing protein profiles to monitor health status. Up to now, however, translation of MS-based proteomics to the clinic has been hampered by its complexity and the substantial time and human resources necessary for sample preparation. Plasma matrix is particularly tricky to process as it contains more than 3000 proteins with concentrations spanning an extreme dynamic range (1010). To address this preanalytical challenge, we designed a microfluidic device (PepS) automating and accelerating blood sample preparation for bottom-up MS-based proteomics analysis. The microfluidic cartridge is operated through a dedicated compact instrument providing fully automated fluid processing and thermal control. In less than 2 h, the PepS device allows bedside plasma separation from whole blood, volume metering, depletion of albumin, protein digestion with trypsin, and stabilization of tryptic peptides on solid-phase extraction sorbent. For this first presentation, the performance of the PepS device was assessed using discovery proteomics and targeted proteomics, detecting a panel of three protein biomarkers routinely assayed in clinical laboratories (alanine aminotransferase 1, C-reactive protein, and myoglobin). This innovative microfluidic device and its associated instrumentation should help to streamline and simplify clinical proteomics studies.


Assuntos
Proteínas Sanguíneas/química , Proteômica/métodos , Biomarcadores , Humanos , Dispositivos Lab-On-A-Chip , Sistemas Automatizados de Assistência Junto ao Leito , Manejo de Espécimes
2.
Lab Chip ; 22(17): 3147-3156, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35678256

RESUMO

A microfluidic platform for the integration of multi-step biological assays has been developed. The presented system is a unique instrument compatible with microfluidic chips for various applications based on bead manipulation. Two examples of microfluidic cartridges are presented here. The first one contains two rows of eight chambers (40 and 80 µL), six reagent inlets, eight testing solution (calibrators and samples) inlets and eight outlets to reproduce precisely each step of a biological assay. This configuration is versatile enough to integrate many different biological assays and save a lot of development time. The second architecture is dedicated to one specific protocol and is completely automated from the standard and sample dilutions to the optical detection. Linear dilutions have been integrated to prepare automatically a range of standard concentrations and outlets have been modified for integrated colorimetric detection. The technology uses pneumatically collapsible chambers to perform all the fluidic operations for a fully automated protocol such as volume calibrations, fluid transport, mixing, and washing steps. A programmable instrument with a software interface has been developed to adapt rapidly a protocol to this cartridge. As an example, these new microfluidic cartridges have been used to successfully perform an immunoassay for gluten detection in the dynamic range of 10-30 ppm with good sensitivity (2 ppm) and specificity.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Glutens , Imunoensaio/métodos , Fenômenos Magnéticos , Microfluídica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA