Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Mater ; 20(12): 1615-1628, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33972762

RESUMO

Isolating single molecules in the solid state has allowed fundamental experiments in basic and applied sciences. When cooled down to liquid helium temperature, certain molecules show transition lines that are tens of megahertz wide, limited by only the excited-state lifetime. The extreme flexibility in the synthesis of organic materials provides, at low costs, a wide palette of emission wavelengths and supporting matrices for such single chromophores. In the past few decades, their controlled coupling to photonic structures has led to an optimized interaction efficiency with light. Molecules can hence be operated as single-photon sources and as nonlinear elements with competitive performance in terms of coherence, scalability and compatibility with diverse integrated platforms. Moreover, they can be used as transducers for the optical read-out of fields and material properties, with the promise of single-quanta resolution in the sensing of charges and motion. We show that quantum emitters based on single molecules hold promise to play a key role in the development of quantum science and technologies.


Assuntos
Óptica e Fotônica , Fótons , Temperatura
2.
Faraday Discuss ; 204: 419-428, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28766624

RESUMO

Dynamic atomic force microscopy measurements are reported that provide evidence for the presence of long-range repulsion in molecular self-assembly on a bulk insulator surface. We present the structures formed from four different benzoic acid derivatives on the (10.4) cleavage plane of calcite kept in ultra-high vacuum. These molecules have in common that they self-assemble into molecular stripes when deposited onto the surface held at room temperature. For all molecules tested, a detailed analysis of the stripe-to-stripe distance distribution reveals a clear deviation from what would be expected for randomly placed, non-interacting stripes (i.e., geometric distribution). When excluding kinetic effects during growth, this result gives evidence for a long-range repulsion mechanism acting during the assembly of these stripes. The fact that this finding is robust against changes in the molecular structure indicates a generic nature of the observed mechanism, implying a ubiquitous origin such as electrostatic repulsion. Finally, we discuss parameters that might affect the unambiguous observation of this generic repulsion under specific experimental conditions.

3.
Phys Chem Chem Phys ; 19(23): 15172-15176, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28561080

RESUMO

Molecular electronics has great potential to surpass known limitations in conventional silicon-based technologies. The development of molecular electronics devices requires reliable strategies for connecting functional molecules by wire-like structures. To this end, diacetylene polymerization has been discussed as a very promising approach for contacting single molecules with a conductive polymer chain. A major challenge for future device fabrication is transferring this method to bulk insulator surfaces, which are mandatory to decouple the electronic structure of the functional molecules from the support surface. Here, we provide experimental evidence for diacetylene polymerization of 3,3'-(1,3-butadiyne-1,4-diyl)bisbenzoic acid precursors on the (10.4) surface of calcite, a bulk insulator with a band gap of around 6 eV. When deposited on the surface held at room temperature, ordered islands with a (1 × 3) superstructure are observed using dynamic atomic force microscopy. A distinct change is revealed upon heating the substrate to 485 K. After heating, molecular stripes with a characteristic inner structure are formed that excellently match the expected diacetylene polymer chains in appearance and repeat distance. The corresponding density functional theory computations reveal molecular-level bonding patterns of both the (1 × 3) superstructure and the formed striped structure, confirming the assignment of on-surface diacetylene polymerization. Transferring the concept of using diacetylene polymerization for creating conductive connections to bulk insulator surfaces paves the way towards application-relevant systems for future molecular electronic devices.

4.
Phys Chem Chem Phys ; 15(14): 4939-46, 2013 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-23440409

RESUMO

Scanning Tunneling Microscopy (STM), Scanning Tunneling Spectroscopy (STS), and manipulation studies were performed on an ordered self-assembled monolayer (SAM) of N,N'-bis(1-hexylheptyl)perylene-3,4:9,10-bis(dicarboximide) molecules on epitaxial graphene on hexagonal silicon carbide - SiC(0001). Four novel aspects of the molecular SAM on graphene are presented. Molecules adsorb in both armchair and zig-zag configurations, giving rise to six orientations of the molecular layer with respect to the underlying substrate. The interaction between the molecules and the graphene surface shifts the LUMO towards the Fermi level, inducing a charge transfer and the opening of a band gap in the graphene, with the LUMO inside. This decouples the LUMO from the surface rendering it invisible in the dI/dV spectroscopy. The HOMO only becomes visible at short tip-surface distances, as its energy lies within the band gap of the SiC substrate. Finally, the observed molecular defects are very particular, being composed exclusively of molecular dimers. These molecular dimers have a stronger interaction with the graphene than other molecules.


Assuntos
Grafite/química , Perileno/análogos & derivados , Compostos Inorgânicos de Carbono/química , Microscopia de Tunelamento , Modelos Moleculares , Perileno/síntese química , Perileno/química , Teoria Quântica , Compostos de Silício/química
5.
Phys Chem Chem Phys ; 14(5): 1700-5, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22193154

RESUMO

Controlling the intrinsic optical and electronic properties of a single molecule adsorbed on a surface requires electronic decoupling of some molecular orbitals from the surface states. Scanning tunneling microscopy experiments and density functional theory calculations are used to study a perylene molecule derivative (DHH-PTCDI), adsorbed on the clean 3 × 3 reconstructed wide band gap silicon carbide surface (SiC(0001)-3 × 3). We find that the LUMO of the adsorbed molecule is invisible in I(V) spectra due to the absence of any surface or bulk states and that the HOMO has a very low saturation current in I(z) spectra. These results present a paradox that the molecular orbitals are electronically isolated from the surface of the wide band gap semiconductor even though strong chemical bonds are formed.

6.
RSC Adv ; 12(2): 671-680, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35425115

RESUMO

Oligoacenes are promising materials in the field of electronic devices since they exhibit high charge carrier mobility and more particularly as a semiconductor in thin film transistors. Herein, we investigate the field effect charge carrier mobility of benzohexacene, recently obtained by cheletropic decarbonylation at moderate temperature. Initially, high performance bottom contact organic thin-film transistors (OTFTs) were fabricated using tetracene to validate the fabrication process. For easier comparison, the geometries and channel sizes of the fabricated devices are the same for the two acenes. The charge transport in OTFTs being closely related to the organic thin film at the dielectric/organic semiconductor interface, the structural and morphological features of the thin films of both materials are therefore studied according to deposition conditions. Finally, by extracting relevant device parameters the benzohexacene based OTFT shows a four-probe contact-corrected hole mobility value of up to 0.2 cm2 V-1 s-1.

7.
Nat Mater ; 8(7): 576-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19525952

RESUMO

Gears are microfabricated down to diameters of a few micrometres. Natural macromolecular motors, of tens of nanometres in diameter, also show gear effects. At a smaller scale, the random rotation of a single-molecule rotor encaged in a molecular stator has been observed, demonstrating that a single molecule can be rotated with the tip of a scanning tunnelling microscope (STM). A self-assembled rack-and-pinion molecular machine where the STM tip apex is the rotation axis of the pinion was also tested. Here, we present the mechanics of an intentionally constructed molecule-gear on a Au(111) surface, mounting and centring one hexa-t-butyl-pyrimidopentaphenylbenzene molecule on one atom axis. The combination of molecular design, molecular manipulation and surface atomic structure selection leads to the construction of a fundamental component of a planar single-molecule mechanical machine. The rotation of our molecule-gear is step-by-step and totally under control, demonstrating nine stable stations in both directions.

8.
J Phys Chem B ; 110(51): 25573-7, 2006 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17181187

RESUMO

Uniaxial anisotropy in two-dimensional self-assembled supramolecular structures is achieved by the coadsorption of two different linear molecules with complementary amine and imide functionalization. The two-dimensional monolayer is defined by a one-dimensional stack of binary chains, which can be forced to line up along steps in vicinal surfaces. The competing driving forces in the self-organization process are discussed in light of the structures observed during single molecule adsorption and coadsorption on flat and vicinal surfaces and the corresponding theoretical calculations.


Assuntos
Estrutura Molecular , Termodinâmica
9.
Chem Commun (Camb) ; 50(73): 10619-21, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25073695

RESUMO

The co-adsorption of two molecular Landers equipped with functional groups capable of forming a complementary triple hydrogen-bonding motif is investigated with scanning tunneling microscopy and molecular mechanics calculations. Surprisingly, the anticipated complementary motif is not realised in 2-D terrace structures, but is observed in 1-D structures at step edges where molecular conformational flexibility is confined.

10.
J Chem Phys ; 128(4): 044508, 2008 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-18247970

RESUMO

We performed comparative low temperature (2-30 K) hole-burning and single molecule experiments with 2-methylterrylene with the goal to detect single rotational tunneling jumps of methyl groups. The hole-burned spectrum with its sharply structured side features which are perfectly symmetrically arranged with respect to the central hole supports the assignment to rotational tunneling transitions. However, instead of one, three clearly distinguishable methyl groups show up in the spectrum. Based on molecular mechanics simulations we attribute them to different, nearly degenerate orientations of guest molecules in one specific site of the hexadecane lattice. The frequency distribution of spontaneous jumps of single molecules reflects the features of the hole-burned spectra, although the distribution in the single molecule experiments is significantly broader. The photoinduced frequency transformation of single molecules ("single molecule photobleaching experiments") fits to the features of the hole-burned spectra, except that, surprisingly, no significant number of spectral jumps could be generated in the frequency range where the prominent narrow antiholes are observed in the hole-burned spectra.

11.
Phys Rev Lett ; 86(4): 672-5, 2001 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-11177909

RESUMO

A detailed experimental and theoretical investigation of the processes involved in the manipulation of individual specially designed porphyrin-based molecules by scanning tunneling microscopy at low temperature is presented. On a stepped Cu(211) surface, the interaction between tip and molecule was used to locally modify in a reversible way the internal configuration of a single molecule, thus drastically changing the tunneling current passing through it. Model calculations confirm that this manipulation realizes the principle of a conformational molecular switch.

12.
Phys Rev Lett ; 87(8): 088302, 2001 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-11497988

RESUMO

The technique of single atom manipulation by means of the scanning tunneling microscope (STM) applies to the controlled displacement of large molecules. By a combined experimental and theoretical work, we show that in a constant height mode of manipulation the STM current intensity carries detailed information on the internal mechanics of the molecule when guided by the STM tip. Controlling and time following the intramolecular behavior of a large molecule on a surface is the first step towards the design of molecular tunnel-wired nanorobots.

13.
Science ; 296(5566): 328-31, 2002 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-11951041

RESUMO

The electronic connection of single molecules to nanoelectrodes on a surface is a basic, unsolved problem in the emerging field of molecular nanoelectronics. By means of variable temperature scanning tunneling microscopy, we show that an organic molecule (C90H98), known as the Lander, can cause the rearrangement of atoms on a Cu(110) surface. These molecules act as templates accommodating metal atoms at the step edges of the copper substrate, forming metallic nanostructures (0.75 nanometers wide and 1.85 nanometers long) that are adapted to the dimensions of the molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA