Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Haematologica ; 109(7): 2060-2072, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426279

RESUMO

BCR::ABL1 negative myeloproliferative neoplasms (MPN) form a distinct group of hematologic malignancies characterized by sustained proliferation of cells from multiple myeloid lineages. With a median survival of 16-35 months in patients with high-risk disease, primary myelofibrosis (PMF) is considered the most aggressive entity amongst all BCR::ABL1 MPN. Additionally, for a significant subset of patients, MPN evolve into secondary acute myeloid leukemia (AML), which has an even poorer prognosis compared to de novo AML. As the exact mechanisms of disease development and progression remain to be elucidated, current therapeutic approaches fail to prevent disease progression or transformation into secondary AML. As each MPN entity is characterized by sustained activation of various immune cells and raised cytokine concentrations within bone marrow (BM) and peripheral blood (PB), MPN may be considered to be typical inflammation-related malignancies. However, the exact role and consequences of increased cytokine concentrations within BM and PB plasma has still not been completely established. Up-regulated cytokines can stimulate cellular proliferation, or contribute to the development of an inflammation-related BM niche resulting in genotoxicity and thereby supporting mutagenesis. The neutrophil chemoattractant CXCL8 is of specific interest as its concentration is increased within PB and BM plasma of patients with PMF. Increased concentration of CXCL8 negatively correlates with overall survival. Furthermore, blockage of the CXCR1/2 axis appears to be able to reduce BM fibrosis and megakaryocyte dysmorphia in murine models. In this review, we summarize available evidence on the role of the CXCL8-CXCR1/2 axis within the pathogenesis of PMF, and discuss potential therapeutic modalities targeting either CXCL8 or its cognate receptors CXCR1/2.


Assuntos
Interleucina-8 , Mielofibrose Primária , Receptores de Interleucina-8A , Receptores de Interleucina-8B , Humanos , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia , Mielofibrose Primária/genética , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/etiologia , Mielofibrose Primária/mortalidade , Animais , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8A/genética , Interleucina-8/metabolismo , Transdução de Sinais
2.
Cell Commun Signal ; 22(1): 94, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308278

RESUMO

BACKGROUND: Interferon-γ-inducible protein of 10 kDa (IP-10/CXCL10) is a dual-function CXC chemokine that coordinates chemotaxis of activated T cells and natural killer (NK) cells via interaction with its G protein-coupled receptor (GPCR), CXC chemokine receptor 3 (CXCR3). As a consequence of natural posttranslational modifications, human CXCL10 exhibits a high degree of structural and functional heterogeneity. However, the biological effect of natural posttranslational processing of CXCL10 at the carboxy (C)-terminus has remained partially elusive. We studied CXCL10(1-73), lacking the four endmost C-terminal amino acids, which was previously identified in supernatant of cultured human fibroblasts and keratinocytes. METHODS: Relative levels of CXCL10(1-73) and intact CXCL10(1-77) were determined in synovial fluids of patients with rheumatoid arthritis (RA) through tandem mass spectrometry. The production of CXCL10(1-73) was optimized through Fmoc-based solid phase peptide synthesis (SPPS) and a strategy to efficiently generate human CXCL10 proteoforms was introduced. CXCL10(1-73) was compared to intact CXCL10(1-77) using surface plasmon resonance for glycosaminoglycan (GAG) binding affinity, assays for cell migration, second messenger signaling downstream of CXCR3, and flow cytometry of CHO cells and primary human T lymphocytes and endothelial cells. Leukocyte recruitment in vivo upon intraperitoneal injection of CXCL10(1-73) was also evaluated. RESULTS: Natural CXCL10(1-73) was more abundantly present compared to intact CXCL10(1-77) in synovial fluids of patients with RA. CXCL10(1-73) had diminished affinity for GAG including heparin, heparan sulfate and chondroitin sulfate A. Moreover, CXCL10(1-73) exhibited an attenuated capacity to induce CXCR3A-mediated signaling, as evidenced in calcium mobilization assays and through quantification of phosphorylated extracellular signal-regulated kinase-1/2 (ERK1/2) and protein kinase B/Akt. Furthermore, CXCL10(1-73) incited significantly less primary human T lymphocyte chemotaxis in vitro and peritoneal ingress of CXCR3+ T lymphocytes in mice. In contrast, loss of the four endmost C-terminal residues did not affect the inhibitory properties of CXCL10 on migration, proliferation, wound closure, phosphorylation of ERK1/2, and sprouting of human microvascular endothelial cells. CONCLUSION: Our study shows that the C-terminal residues Lys74-Pro77 of CXCL10 are important for GAG binding, signaling through CXCR3A, T lymphocyte chemotaxis, but dispensable for angiostasis.


Assuntos
Quimiocina CXCL10 , Quimiotaxia , Glicosaminoglicanos , Animais , Cricetinae , Humanos , Camundongos , Quimiocina CXCL10/metabolismo , Cricetulus , Células Endoteliais/metabolismo , Heparina/metabolismo , Linfócitos T/metabolismo , Glicosaminoglicanos/metabolismo
3.
Cell Mol Life Sci ; 80(2): 55, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36729338

RESUMO

Chemokine ligands and receptors regulate the directional migration of leukocytes. Post-translational modifications of chemokine receptors including O-glycosylation and tyrosine sulfation have been reported to regulate ligand binding and resulting signaling. Through in silico analyses, we determined potential conserved O-glycosylation and sulfation sites on human and murine CC chemokine receptors. Glyco-engineered CHO cell lines were used to measure the impact of O-glycosylation on CC chemokine receptor CCR5, while mutation of tyrosine residues and treatment with sodium chlorate were performed to determine the effect of tyrosine sulfation. Changing the glycosylation or tyrosine sulfation on CCR5 reduced the receptor signaling by the more positively charged CCL5 and CCL8 more profoundly compared to the less charged CCL3. The loss of negatively charged sialic acids resulted only in a minor effect on CCL3-induced signal transduction. The enzymes GalNAc-T1 and GalNAc-T11 were shown to be involved in the process of chemokine receptor O-glycosylation. These results indicate that O-glycosylation and tyrosine sulfation are involved in the fine-tuning and recognition of chemokine interactions with CCR5 and the resulting signaling.


Assuntos
Quimiocinas , Transdução de Sinais , Cricetinae , Animais , Humanos , Camundongos , Quimiocinas/metabolismo , Processamento de Proteína Pós-Traducional , Receptores CCR5/genética , Células CHO , Tirosina/metabolismo , Ligação Proteica
4.
Cell Mol Life Sci ; 80(8): 234, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505242

RESUMO

The human chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is involved in several homeostatic processes and pathologies through interaction with its cognate G protein-coupled receptor CXCR4. Recent research has shown that CXCL12 is present in the lungs and circulation of patients with coronavirus disease 2019 (COVID-19). However, the question whether the detected CXCL12 is bioactive was not addressed. Indeed, the activity of CXCL12 is regulated by NH2- and COOH-terminal post-translational proteolysis, which significantly impairs its biological activity. The aim of the present study was to characterize proteolytic processing of CXCL12 in broncho-alveolar lavage (BAL) fluid and blood plasma samples from critically ill COVID-19 patients. Therefore, we optimized immunosorbent tandem mass spectrometry proteoform analysis (ISTAMPA) for detection of CXCL12 proteoforms. In patient samples, this approach uncovered that CXCL12 is rapidly processed by site-specific NH2- and COOH-terminal proteolysis and ultimately degraded. This proteolytic inactivation occurred more rapidly in COVID-19 plasma than in COVID-19 BAL fluids, whereas BAL fluid samples from stable lung transplantation patients and the non-affected lung of lung cancer patients (control groups) hardly induced any processing of CXCL12. In COVID-19 BAL fluids with high proteolytic activity, processing occurred exclusively NH2-terminally and was predominantly mediated by neutrophil elastase. In low proteolytic activity BAL fluid and plasma samples, NH2- and COOH-terminal proteolysis by CD26 and carboxypeptidases were observed. Finally, protease inhibitors already approved for clinical use such as sitagliptin and sivelestat prevented CXCL12 processing and may therefore be of pharmacological interest to prolong CXCL12 half-life and biological activity in vivo.


Assuntos
COVID-19 , Humanos , Proteólise , Quimiocina CXCL12/metabolismo , Peptídeo Hidrolases , Pulmão/metabolismo , Receptores CXCR4 , Processamento de Proteína Pós-Traducional
5.
Med Res Rev ; 43(5): 1537-1606, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37036061

RESUMO

Neutrophils are powerful effector cells leading the first wave of acute host-protective responses. These innate leukocytes are endowed with oxidative and nonoxidative defence mechanisms, and play well-established roles in fighting invading pathogens. With microbicidal weaponry largely devoid of specificity and an all-too-well recognized toxicity potential, collateral damage may occur in neutrophil-rich diseases. However, emerging evidence suggests that neutrophils are more versatile, heterogeneous, and sophisticated cells than initially thought. At the crossroads of innate and adaptive immunity, neutrophils demonstrate their multifaceted functions in infectious and noninfectious pathologies including cancer, autoinflammation, and autoimmune diseases. Here, we discuss the kinetics of neutrophils and their products of activation from bench to bedside during health and disease, and provide an overview of the versatile functions of neutrophils as key modulators of immune responses and physiological processes. We focus specifically on those activities and concepts that have been validated with primary human cells.


Assuntos
Anti-Infecciosos , Neoplasias , Humanos , Neutrófilos , Imunidade Inata , Imunidade Adaptativa , Inflamação
6.
Respir Res ; 23(1): 359, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528664

RESUMO

BACKGROUND: Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by recurrent airway infection and inflammation. There is no cure for PCD and to date there are no specific treatments available. Neutrophils are a crucial part of the immune system and are known to be dysfunctional in many inflammatory diseases. So far, the role of the neutrophils in PCD airways is largely unknown. The purpose of this study was to investigate the phenotype and function of airway neutrophils in PCD, and compare them to blood neutrophils. METHODS: Paired peripheral blood and spontaneously expectorated sputum samples from patients with PCD (n = 32) and a control group of patients with non-PCD, non-cystic fibrosis bronchiectasis (n = 5) were collected. The expression of neutrophil-specific surface receptors was determined by flow cytometry. Neutrophil function was assessed by measuring the extent of actin polymerization, production of reactive oxygen species (ROS) and release of neutrophil extracellular traps (NETs) in response to activating stimuli. RESULTS: Sputum neutrophils displayed a highly activated phenotype and were unresponsive to stimuli that would normally induce ROS production, actin polymerization and the expulsion of NETs. In addition, PCD sputum displayed high activity of neutrophil elastase, and impaired the efferocytosis by healthy donor macrophages. CONCLUSIONS: Sputum neutrophils in PCD are dysfunctional and likely contribute to ongoing inflammation in PCD airways. Further research should focus on anti-inflammatory therapies and stimulation of efferocytosis as a strategy to treat PCD.


Assuntos
Transtornos da Motilidade Ciliar , Neutrófilos , Humanos , Neutrófilos/metabolismo , Escarro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Actinas/metabolismo , Inflamação/metabolismo
7.
Parasite Immunol ; 44(6): e12912, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35175636

RESUMO

Neutrophils are the most abundant circulating leukocytes in human peripheral blood. They are often the first cells to respond to an invading pathogen and might therefore play an important role in malaria. Malaria is a globally important disease caused by Plasmodium parasites, responsible for more than 400,000 deaths each year. Most of these deaths are caused by complications, including cerebral malaria, severe malarial anaemia, placental malaria, renal injury, metabolic problems and malaria-associated acute respiratory distress syndrome. Neutrophils contribute in the immune defence against malaria, through clearance of parasites via phagocytosis, production of reactive oxygen species and release of neutrophil extracellular traps (NETs). However, Plasmodium parasites diminish antibacterial functions of neutrophils, making patients more susceptible to other infections. Neutrophils might also be involved in the development of malaria complications, for example via the release of toxic granules and NETs. However, technical pitfalls in the determination of the roles of neutrophils have caused contradicting results. Further investigations need to consider these pitfalls, in order to elucidate the role of neutrophils in malaria complications.


Assuntos
Armadilhas Extracelulares , Malária Cerebral , Plasmodium , Feminino , Humanos , Neutrófilos , Placenta , Gravidez
8.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613529

RESUMO

A significant part of adult-onset asthma is caused by occupational exposure to both high- and low-molecular-mass agents. Insects are occasionally described to cause occupational allergy in professions including anglers and fishers, laboratory workers, employees of aquaculture companies, farmers, bakers, sericulture workers and pet shop workers. Occupational insect allergies are often respiratory, causing asthma or rhinoconjunctivitis, but can be cutaneous as well. The European Union recently approved three insect species for human consumption, enabling an industry to develop where more employees could be exposed to insect products. This review overviews knowledge on occupational insect allergy risks and the tools used to diagnose employees. Despite the limited availability of commercial occupational insect allergy diagnostics, 60.9% of 164 included reports used skin prick tests and 63.4% of reports used specific IgE tests. In 21.9% of reports, a more elaborate diagnosis of occupational asthma was made by specific inhalation challenges or peak expiratory flow measurements at the workplace. In some work environments, 57% of employees were sensitized, and no less than 60% of employees reported work-related symptoms. Further development and optimization of specific diagnostics, together with strong primary prevention, may be vital to the health conditions of workers in the developing insect industry.


Assuntos
Asma , Doenças Profissionais , Exposição Ocupacional , Adulto , Humanos , Doenças Profissionais/diagnóstico , Doenças Profissionais/etiologia , Asma/etiologia , Alérgenos , Exposição Ocupacional/efeitos adversos , Pele , Testes Cutâneos
9.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077113

RESUMO

Ischemia-reperfusion injury (IRI) drives graft rejection and is the main cause of mortality after liver transplantation. During IRI, an intense inflammatory response marked by chemokine production and neutrophil recruitment occurs. However, few strategies are available to restrain this excessive response. Here, we aimed to interfere with chemokine function during IRI in order to disrupt neutrophil recruitment to the injured liver. For this, we utilized a potent glycosaminoglycan (GAG)-binding peptide containing the 30 C-terminal amino acids of CXCL9 (MIG30) that is able to inhibit the binding of chemokines to GAGs in vitro. We observed that mice subjected to IRI and treated with MIG30 presented significantly lower liver injury and dysfunction as compared to vehicle-treated mice. Moreover, the levels of chemokines CXCL1, CXCL2 and CXCL6 and of proinflammatory cytokines TNF-α and IL-6 were significantly reduced in MIG30-treated mice. These events were associated with a marked inhibition of neutrophil recruitment to the liver during IRI. Lastly, we observed that MIG30 is unable to affect leukocytes directly nor to alter the stimulation by either CXCL8 or lipopolysaccharide (LPS), suggesting that its protective properties derive from its ability to inhibit chemokine activity in vivo. We conclude that MIG30 holds promise as a strategy to treat liver IRI and inflammation.


Assuntos
Quimiocinas , Traumatismo por Reperfusão , Animais , Quimiocinas/metabolismo , Isquemia/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/metabolismo , Peptídeos/farmacologia , Reperfusão/efeitos adversos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/prevenção & controle
10.
Immunology ; 163(2): 115-127, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33315264

RESUMO

Serum amyloid A (SAA) is an acute-phase protein (APP) to which multiple immunological functions have been attributed. Regardless, the true biological role of SAA remains poorly understood. SAA is remarkably conserved in mammalian evolution, thereby suggesting an important biological function. Since its discovery in the 1970s, the majority of researchers have investigated SAA using recombinant forms made available through bacterial expression. Nevertheless, recent studies indicate that these recombinant forms of SAA are unreliable. Indeed, commercial SAA variants have been shown to be contaminated with bacterial products including lipopolysaccharides and lipoproteins. As such, biological activities and receptor usage (TLR2, TLR4) revealed through the use of commercial SAA variants may not reflect the inherent nature of this APP. Within this review, we discuss the biological effects of SAA that have been demonstrated through more solid experimental approaches. SAA takes part in the innate immune response via the recruitment of leucocytes and executes, through pathogen recognition, antimicrobial activity. Knockout animal models implicate SAA in a range of functions, such as regulation of T-cell-mediated responses and monopoiesis. Moreover, through its structural motifs, not only does SAA function as an extracellular matrix protein, but it also binds extracellular matrix proteins. Finally, we here also provide an overview of definite SAA receptor-mediated functions and highlight those that are yet to be validated. The role of FPR2 in SAA-mediated leucocyte recruitment has been confirmed; nevertheless, SAA has been linked to a range of other receptors including CD36, SR-BI/II, RAGE and P2RX7.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Proteína Amiloide A Sérica/metabolismo , Linfócitos T/imunologia , Animais , Movimento Celular , Proteínas da Matriz Extracelular/genética , Humanos , Imunidade Celular , Imunidade Inata , Camundongos Knockout , Receptores Imunológicos/metabolismo , Proteína Amiloide A Sérica/genética
11.
J Clin Immunol ; 41(5): 1072-1084, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33666778

RESUMO

PURPOSE: Familial Mediterranean Fever (FMF) and Pyrin-Associated Autoinflammation with Neutrophilic Dermatosis (PAAND) are clinically distinct autoinflammatory disorders caused by mutations in the pyrin-encoding gene MEFV. We investigated the transcriptional, phenotypical, and functional characteristics of patient neutrophils to explore their potential role in FMF and PAAND pathophysiology. METHODS: RNA sequencing was performed to discover transcriptional aberrancies. The phenotypical features, degranulation properties, and phagocytic capacity of neutrophils were assessed by flow cytometry. Production of reactive oxygen species (ROS), myeloperoxidase (MPO) release, and chemotactic responses were investigated via chemiluminescence, ELISA, and Boyden chamber assays, respectively. RESULTS: Neutrophils from PAAND and FMF patients showed a partially overlapping, activated gene expression profile with increased expression of S100A8, S100A9, S100A12, IL-4R, CD48, F5, MMP9, and NFKB. Increased MMP9 and S100A8/A9 expression levels were accompanied by high plasma concentrations of the encoded proteins. Phenotypical analysis revealed that neutrophils from FMF patients exhibited an immature character with downregulation of chemoattractant receptors CXCR2, C5aR, and BLTR1 and increased expression of Toll-like receptor 4 (TLR4) and TLR9. PAAND neutrophils displayed an increased random, but reduced CXCL8-induced migration. A tendency for enhanced random migration was observed for FMF neutrophils. PAAND neutrophils showed a moderately but significantly enhanced phagocytic activity as opposed to neutrophils from FMF patients. Neutrophils from both patient groups showed increased MPO release and ROS production. CONCLUSIONS: Neutrophils from patients with FMF and PAAND, carrying different mutations in the MEFV gene, share a pro-inflammatory phenotype yet demonstrate diverse features, underscoring the distinction between both diseases.


Assuntos
Febre Familiar do Mediterrâneo , Inflamação , Neutrófilos/imunologia , Pirina/genética , Dermatopatias , Adulto , Idoso , Calgranulina A/sangue , Calgranulina B/sangue , Citocinas/sangue , Febre Familiar do Mediterrâneo/sangue , Febre Familiar do Mediterrâneo/genética , Febre Familiar do Mediterrâneo/imunologia , Feminino , Humanos , Inflamação/sangue , Inflamação/genética , Inflamação/imunologia , Masculino , Metaloproteinase 9 da Matriz/sangue , Pessoa de Meia-Idade , Peroxidase/imunologia , Fagocitose , Fenótipo , Dermatopatias/sangue , Dermatopatias/genética , Dermatopatias/imunologia , Transcriptoma , Adulto Jovem
13.
FASEB J ; 34(9): 11498-11510, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32741032

RESUMO

Staphylococcus aureus is the main cause of septic arthritis in humans, a disease associated with high morbidity and mortality. Inflammation triggered in response to infection is fundamental to control bacterial growth but may cause permanent tissue damage. Here, we evaluated the role of Lipoxin A4 (LXA4 ) in S aureus-induced arthritis in mice. Septic arthritis was induced by S aureus injection into tibiofemoral joints. At different time points, we evaluated cell recruitment and bacterial load in the joint, the production of pro-inflammatory molecules, and LXA4 in inflamed tissue and analyzed joint damage and dysfunction. LXA4 was investigated using genetically modified mice or by pharmacological blockade of its synthesis and receptor. CD11c+ cells were evaluated in lymph nodes by confocal microscopy and flow cytometry and dendritic cell chemotaxis using the Boyden chamber. Absence or pharmacological blockade of 5-lipoxygenase (5-LO) reduced joint inflammation and dysfunction and was associated with better control of infection at 4 to 7 days after the infection. There was an increase in LXA4 in joints of S aureus-infected mice and administration of LXA4 reversed the phenotype in 5-LO-/- mice. Blockade or absence of the LXA4 receptor FPR2 has a phenotype similar to 5-LO-/- mice. Mechanistically, LXA4 appeared to control migration and function of dendritic cells, cells shown to be crucial for adequate protective responses in the model. Thus, after the first days of infection when symptoms become evident therapies that inhibit LXA4 synthesis or action could be useful for treatment of S aureus-induced arthritis.


Assuntos
Artrite Infecciosa/complicações , Articulações/efeitos dos fármacos , Lipoxinas/farmacologia , Infecções Estafilocócicas/complicações , Staphylococcus aureus/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Artrite Infecciosa/microbiologia , Células Cultivadas , Humanos , Articulações/microbiologia , Articulações/patologia , Lipoxinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia
14.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201048

RESUMO

The airways of patients with primary ciliary dyskinesia (PCD) contain persistently elevated neutrophil numbers and CXCL8 levels. Despite their abundance, neutrophils fail to clear the airways from bacterial infections. We investigated whether neutrophil functions are altered in patients with PCD. Neutrophils from patients and healthy controls (HC) were isolated from peripheral blood and exposed to various bacterial stimuli or cytokines. Neutrophils from patients with PCD were less responsive to low levels of fMLF in three different chemotaxis assays (p < 0.05), but expression of the fMLF receptors was unaltered. PCD neutrophils showed normal phagocytic function and expression of adhesion molecules. However, PCD neutrophils produced less reactive oxygen species upon stimulation with bacterial products or cytokines compared to HC neutrophils (p < 0.05). Finally, the capacity to release DNA, as observed during neutrophil extracellular trap formation, seemed to be reduced in patients with PCD compared to HC (p = 0.066). These results suggest that peripheral blood neutrophils from patients with PCD, in contrast to those of patients with cystic fibrosis or COPD, do not show features of over-activation, neither on baseline nor after stimulation. If these findings extend to lung-resident neutrophils, the reduced neutrophil activity could possibly contribute to the recurrent respiratory infections in patients with PCD.


Assuntos
Anti-Infecciosos/metabolismo , Bactérias/metabolismo , Quimiotaxia , Transtornos da Motilidade Ciliar/patologia , Citocinas/metabolismo , Neutrófilos/patologia , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Pré-Escolar , Transtornos da Motilidade Ciliar/imunologia , Transtornos da Motilidade Ciliar/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Neutrófilos/metabolismo , Adulto Jovem
15.
Blood ; 131(4): 439-449, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371208

RESUMO

A natural leukocyte chemoattractant was isolated from bovine serum by an established 4-step purification procedure. Based on its relative molecular mass of 7287 and NH2-terminal sequence, the protein was identified as a carboxy-terminal peptide of the acute phase protein serum amyloid A1 (SAA1). This SAA1(46-112) fragment and its human equivalent SAA1(47-104) were chemically synthesized. Unlike intact SAA1α, these SAA fragments failed to directly chemoattract neutrophils and monocytes, to induce chemokines, and to stimulate downstream extracellular signal-regulated kinase signaling in monocytes. However, the SAA fragments potently synergized with CCL3 to induce monocyte migration and with CXCL8 to stimulate neutrophil shape changes and chemotaxis. Unlike intact SAA1α, SAA1(46-112) did not induce CXCL6 ex vivo but provoked a cooperative intraperitoneal neutrophil recruitment in mice when coinjected with CXCL6 into the peritoneal cavity. Moreover, SAA1(47-104) desensitized the synergy between intact SAA1α and CXCL8 in neutrophil chemotaxis, suggesting that this peptide binds formyl peptide receptor 2 (FPR2). This was evidenced by a complete blockade of synergy between the COOH-terminal SAA1 fragments and CXCL8 or CCL3 in neutrophil and monocyte chemotaxis, respectively, by the FPR2 antagonist WRW4 Thus, SAA1 is degraded into fragments lacking chemokine-inducing capacity, while keeping synergy with cytokine-induced chemokines to sustain limited inflammation.


Assuntos
Quimiocina CCL3/imunologia , Quimiocinas/imunologia , Interleucina-8/imunologia , Leucócitos/efeitos dos fármacos , Receptores de Formil Peptídeo/imunologia , Receptores de Lipoxinas/imunologia , Proteína Amiloide A Sérica/química , Proteína Amiloide A Sérica/farmacologia , Animais , Bovinos , Quimiotaxia/efeitos dos fármacos , Feminino , Humanos , Leucócitos/imunologia , Camundongos , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Proteína Amiloide A Sérica/síntese química
16.
Mediators Inflamm ; 2020: 6087109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32694927

RESUMO

The serum amyloid A (SAA) gene family is highly conserved and encodes acute phase proteins that are upregulated in response to inflammatory triggers. Over the years, a considerable amount of literature has been published attributing a wide range of biological effects to SAAs such as leukocyte recruitment, cytokine and chemokine expression and induction of matrix metalloproteinases. Furthermore, SAAs have also been linked to protumorigenic, proatherogenic and anti-inflammatory effects. Here, we investigated the biological effects conveyed by murine SAA3 (mu rSAA3) recombinantly expressed in Escherichia coli. We observed the upregulation of a number of chemokines including CCL2, CCL3, CXCL1, CXCL2, CXCL6 or CXCL8 following stimulation of monocytic, fibroblastoid and peritoneal cells with mu rSAA3. Furthermore, this SAA variant displayed potent in vivo recruitment of neutrophils through the activation of TLR4. However, a major problem associated with proteins derived from recombinant expression in bacteria is potential contamination with various bacterial products, such as lipopolysaccharide, lipoproteins and formylated peptides. This is of particular relevance in the case of SAA as there currently exists a discrepancy in biological activity between SAA derived from recombinant expression and that of an endogenous source, i.e. inflammatory plasma. Therefore, we subjected commercial recombinant mu rSAA3 to purification to homogeneity via reversed-phase high-performance liquid chromatography (RP-HPLC) and re-assessed its biological potential. RP-HPLC-purified mu rSAA3 did not induce chemokines and lacked in vivo neutrophil chemotactic activity, but retained the capacity to synergize with CXCL8 in the activation of neutrophils. In conclusion, experimental results obtained when using proteins recombinantly expressed in bacteria should always be interpreted with care.


Assuntos
Carcinoma Pulmonar de Lewis/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animais , Carcinoma Pulmonar de Lewis/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL3/metabolismo , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Quimiocina CXCL6/metabolismo , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Citometria de Fluxo , Humanos , Interleucina-8/metabolismo , Lipopolissacarídeos/metabolismo , Lipoproteínas/metabolismo , Camundongos , Células RAW 264.7 , Proteína Amiloide A Sérica/genética
17.
J Clin Immunol ; 39(3): 298-308, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30838481

RESUMO

DOCK2 is a guanine-nucleotide-exchange factor for Rac proteins. Activated Rac serves various cellular functions including the reorganization of the actin cytoskeleton in lymphocytes and neutrophils and production of reactive oxygen species in neutrophils. Since 2015, six unrelated patients with combined immunodeficiency and early-onset severe viral infections caused by bi-allelic loss-of-function mutations in DOCK2 have been described. Until now, the function of phagocytes, specifically neutrophils, has not been assessed in human DOCK2 deficiency. Here, we describe a new kindred with four affected siblings harboring a homozygous splice-site mutation (c.2704-2 A > C) in DOCK2. The mutation results in alternative splicing and a complete loss of DOCK2 protein expression. The patients presented with leaky severe combined immunodeficiency or Omenn syndrome. The novel mutation affects EBV-B cell migration and results in NK cell dysfunction similar to previous observations. Moreover, both cytoskeletal rearrangement and reactive oxygen species production are partially impaired in DOCK2-deficient neutrophils.


Assuntos
Linfócitos B/imunologia , Proteínas Ativadoras de GTPase/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Células Matadoras Naturais/imunologia , Neutrófilos/imunologia , Deleção de Sequência/genética , Imunodeficiência Combinada Severa/genética , Processamento Alternativo/genética , Humanos , Estresse Oxidativo , Linhagem
18.
J Immunol ; 196(6): 2893-901, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26864035

RESUMO

The generation of Abs that recognize the native conformation of G protein-coupled receptors can be a challenging task because, like most multimembrane-spanning proteins, they are extremely difficult to purify as native protein. By combining genetic immunization, phage display, and biopanning, we identified two functional monovalent Abs (nanobodies) targeting ChemR23. The two nanobodies (CA4910 and CA5183) were highly specific for the human receptor and bind ChemR23 with moderate affinity. Binding studies also showed that they share a common binding site that overlaps with that of chemerin, the natural ligand of ChemR23. Consistent with these results, we found that the nanobodies were able to antagonize chemerin-induced intracellular calcium increase. The inhibition was partial when chemerin was used as agonist and complete when the chemerin(149-157) nonapeptide was used as agonist. Engineering of a bivalent CA4910 nanobody resulted in a relatively modest increase in affinity but a marked enhancement of efficacy as an antagonist of chemerin induced intracellular calcium mobilization and a much higher potency against the chemerin(149-157) nonapeptide-induced response. We also demonstrated that the fluorescently labeled nanobodies detect ChemR23 on the surface of human primary cell populations as efficiently as a reference mouse mAb and that the bivalent CA4910 nanobody behaves as an efficient antagonist of chemerin-induced chemotaxis of human primary cells. Thus, these nanobodies constitute new tools to study the role of the chemerin/ChemR23 system in physiological and pathological conditions.


Assuntos
Células Dendríticas/metabolismo , Macrófagos/metabolismo , Receptores de Quimiocinas/imunologia , Anticorpos de Domínio Único/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Sinalização do Cálcio , Camelídeos Americanos , Técnicas de Visualização da Superfície Celular , Células Cultivadas , Quimiocinas/metabolismo , DNA/administração & dosagem , Engenharia Genética , Humanos , Imunização , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia
19.
Eur J Immunol ; 45(1): 101-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25345597

RESUMO

Serum amyloid A (SAA) is an acute phase protein that is upregulated in inflammatory diseases and chemoattracts monocytes, lymphocytes, and granulocytes via its G protein-coupled receptor formyl peptide receptor like 1/formyl peptide receptor 2 (FPRL1/FPR2). Here, we demonstrated that the SAA1α isoform also chemoattracts monocyte-derived immature dendritic cells (DCs) in the Boyden and µ-slide chemotaxis assay and that its chemotactic activity for monocytes and DCs was indirectly mediated via rapid chemokine induction. Indeed, SAA1 induced significant amounts (≥5 ng/mL) of macrophage inflammatory protein-1α/CC chemokine ligand 3 (MIP-1α/CCL3) and interleukin-8/CXC chemokine ligand 8 (IL-8/CXCL8) in monocytes and DCs in a dose-dependent manner within 3 h. However, SAA1 also directly activated monocytes and DCs for signaling and chemotaxis without chemokine interference. SAA1-induced monocyte migration was nevertheless significantly prevented (60-80% inhibition) in the constant presence of desensitizing exogenous MIP-1α/CCL3, neutralizing anti-MIP-1α/CCL3 antibody, or a combination of CC chemokine receptor 1 (CCR1) and CCR5 antagonists, indicating that this endogenously produced CC chemokine was indirectly contributing to SAA1-mediated chemotaxis. Further, anti-IL-8/CXCL8 antibody neutralized SAA1-induced monocyte migration, suggesting that endogenous IL-8/CXCL8 acted in concert with MIP-1α/CCL3. This explained why SAA1 failed to synergize with exogenously added MIP-1α/CCL3 or stromal cell-derived factor-1α (SDF-1α)/CXCL12 in monocyte and DC chemotaxis. In addition to direct leukocyte activation, SAA1 induces a chemotactic cascade mediated by expression of cooperating chemokines to prolong leukocyte recruitment to the inflammatory site.


Assuntos
Quimiocina CCL3/imunologia , Células Dendríticas/efeitos dos fármacos , Interleucina-8/imunologia , Monócitos/efeitos dos fármacos , Proteína Amiloide A Sérica/farmacologia , Anticorpos Neutralizantes/farmacologia , Linhagem Celular , Quimiocina CCL3/antagonistas & inibidores , Quimiocina CCL3/genética , Quimiocina CXCL12/farmacologia , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Cultura em Câmaras de Difusão , Relação Dose-Resposta Imunológica , Regulação da Expressão Gênica , Humanos , Interleucina-8/agonistas , Interleucina-8/antagonistas & inibidores , Interleucina-8/genética , Monócitos/citologia , Monócitos/imunologia , Cultura Primária de Células , Receptores CCR1/antagonistas & inibidores , Receptores CCR1/genética , Receptores CCR1/imunologia , Receptores CCR5/genética , Receptores CCR5/imunologia , Proteínas Recombinantes/farmacologia , Transdução de Sinais
20.
Angiogenesis ; 17(3): 631-40, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24469069

RESUMO

CXC chemokines influence a variety of biological processes, such as angiogenesis, both in a physiological and pathological context. Platelet factor-4 (PF-4)/CXCL4 and its variant PF-4var/CXCL4L1 are known to favor angiostasis by inhibiting endothelial cell proliferation and chemotaxis. CXCL4L1 in particular is a potent inhibitor of angiogenesis with anti-tumoral characteristics, both through regulation of neovascularization and through attraction of activated lymphocytes. However, its underlying signaling pathways remain to be elucidated. Here, we have identified various intracellular pathways activated by CXCL4L1 in comparison with other CXCR3 ligands, including CXCL4 and interferon-γ-induced protein 10/CXCL10. Signaling experiments show involvement of the mitogen-activated protein kinase (MAPK) family in CXCR3A-transfected cells, activated lymphocytes and human microvascular endothelial cells (HMVEC). In CXCR3A transfectants, CXCL4 and CXCL4L1 activated p38 MAPK, as well as Src kinase within 30 and 5 min, respectively. Extracellular signal-regulated kinase (ERK) phosphorylation occurred in activated lymphocytes, yet was inhibited in microvascular and lymphatic endothelial cells. CXCL4L1 and CXCL4 counterbalanced the angiogenic chemokine stromal cell-derived factor-1/CXCL12 in both endothelial cell types. Notably, inhibition of ERK signaling by CXCL4L1 and CXCL4 in lymphatic endothelial cells implies that these chemokines might also regulate lymphangiogenesis. Furthermore, CXCL4, CXCL4L1 and CXCL10 slightly enhanced forskolin-stimulated cAMP production in HMVEC. Finally, CXCL4, but not CXCL4L1, induced activation of p70S6 kinase within 5 min in HMVEC. Our findings confirm that the angiostatic chemokines CXCL4L1 and CXCL4 activate both CXCR3A and CXCR3B and bring new insights into the complexity of their signaling cascades.


Assuntos
Células Endoteliais/metabolismo , Vasos Linfáticos/citologia , Linfócitos/enzimologia , Microvasos/citologia , Fator Plaquetário 4/metabolismo , Transdução de Sinais , Adenilil Ciclases/metabolismo , Linhagem Celular , Quimiocina CXCL12 , Células Endoteliais/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Ativação Linfocitária , Linfócitos/citologia , Fosforilação , Receptores CXCR3/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA