Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
World Neurosurg ; 184: e53-e64, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185460

RESUMO

OBJECTIVE: Repetitive Transcranial Magnetic Stimulation (rTMS) has been shown to be effective for pain modulation in a variety of pathological conditions causing neuropathic pain. The purpose of this study is to conduct a network meta-analysis (NMA) of randomized control trials to identify the most optimal frequency required to achieve chronic pain modulation using rTMS. METHODS: A comprehensive search was conducted in electronic databases to identify randomized controlled trials investigating the efficacy of rTMS for chronic pain management. A total of 24 studies met the inclusion criteria, and a NMA was conducted to identify the most effective rTMS frequency for chronic pain management. RESULTS: Our analysis revealed that high frequency rTMS (20 Hz) was the most effective frequency for chronic pain modulation. Patients treated with 20 Hz had lower pain levels than those treated at 5 Hz (mean difference [MD] = -3.11 [95% confidence interval {CI}: -5.61 - -0.61], P = 0.032) and control (MD = -1.99 [95% CI: -3.11 - -0.88], P = 0.023). Similarly, treatment with 10 Hz had lower pain levels compared to 5 Hz (MD = -2.56 [95% CI: -5.05 - -0.07], P = 0.045) and control (MD = -1.44 [95% CI: -2.52 - -0.36], P = 0.031). 20 Hz and 10 Hz were not statistically different. CONCLUSIONS: This NMA suggests that high frequency rTMS (20 Hz) is the most optimal frequency for chronic pain modulation. These findings have important clinical implications and can guide healthcare professionals in selecting the most effective frequency for rTMS treatment in patients with chronic pain.

2.
Photochem Photobiol ; 97(3): 607-617, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33113217

RESUMO

Painless photodynamic therapy (p-PDT), which involves application of photosensitizer and immediate exposure to light to treat actinic keratosis (AK) in patients, causes negligible pain on the day of treatment but leads to delayed inflammation and effective lesion clearance (Kaw et al., J Am Acad Dermatol 2020). To better understand how p-PDT works, hairless mice with UV-induced AK were treated with p-PDT and monitored for 2 weeks. Lesion clearance after p-PDT was similar to clearance after conventional PDT (c-PDT). However, lesion biopsies showed minimal cell death and less production of reactive oxygen species (ROS) in p-PDT treated than in c-PDT-treated lesions. Interestingly, p-PDT triggered vigorous recruitment of immune cells associated with innate immunity. Neutrophils (Ly6G+) and macrophages (F4/80+) appeared at 4 h and peaked at 24 h after p-PDT. Damage-associated molecular patterns (DAMPs), including calreticulin, HMGB1, and HSP70, were expressed at maximum levels around 24 h post-p-PDT. Total T cells (CD3+) were increased at 24 h, whereas large increases in cytotoxic (CD8+) and regulatory (Foxp3+) T cells were observed at 1 and 2 weeks post-p-PDT. In summary, the ability of p-PDT to eliminate AK lesions, despite very little overt cellular damage, appears to involve stimulation of a local immune response.


Assuntos
Carcinoma de Células Escamosas , Fotoquimioterapia , Ácido Aminolevulínico/uso terapêutico , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Modelos Animais de Doenças , Imunidade , Ceratose Actínica/tratamento farmacológico , Camundongos , Fármacos Fotossensibilizantes/uso terapêutico , Resultado do Tratamento
3.
J Hematol Oncol ; 13(1): 139, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076970

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous and complex disease, and treatments for this disease have not been curative for the majority of patients. In younger patients, internal tandem duplication of FLT3 (FLT3-ITD) is a common mutation for which two inhibitors (midostaurin and gilteritinib) with varied potency and specificity for FLT3 are clinically approved. However, the high rate of relapse or failed initial response of AML patients suggests that the addition of a second targeted therapy may be necessary to improve efficacy. Using an unbiased large-scale CRISPR screen, we genetically identified BCL2 knockout as having synergistic effects with an approved FLT3 inhibitor. Here, we provide supportive studies that validate the therapeutic potential of the combination of FLT3 inhibitors with venetoclax in vitro and in vivo against multiple models of FLT3-ITD-driven AML. Our unbiased approach provides genetic validation for co-targeting FLT3 and BCL2 and repurposes CRISPR screening data, utilizing the genome-wide scope toward mechanistic understanding.


Assuntos
Leucemia Mieloide Aguda/terapia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Compostos de Anilina/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Feminino , Técnicas de Inativação de Genes , Terapia Genética , Humanos , Leucemia Mieloide Aguda/genética , Camundongos SCID , Pirazinas/uso terapêutico , Estaurosporina/análogos & derivados , Estaurosporina/uso terapêutico , Sulfonamidas/uso terapêutico
4.
Artigo em Inglês | MEDLINE | ID: mdl-33790491

RESUMO

Aminolevulinic acid based photodynamic therapy (ALA-PDT) is a popular and efficacious treatment for actinic keratosis (AK). However, standard PDT can elicit stinging pain during illumination, and hence is not always favored by patients. In a new regimen called metronomic PDT (mPDT), similar to daylight PDT but using blue light, the illumination is delivered concurrently with ALA application rather than after a 1-hour pre-incubation (conventional regimen, cPDT). In the clinic, mPDT is not only painless but also nearly as effective as cPDT for AK lesion clearance. In this investigation, a murine AK model (generated by repeated UVB exposure) was treated with either mPDT or cPDT. Lesion clearance was followed by area measurement, and samples were harvested for mechanistic analyses. Compared to pretreatment (100%), the average lesion area was reduced to 47% and 32% in cPDT, and to 57% and 40% in mPDT at 1- and 2-weeks post PDT, respectively. Relative to untreated controls, enhanced cell death (histomorphology by H&E staining and apoptosis by TUNEL assay), and generation of Reactive Oxygen Species (ROS; CM-H2DCFDA staining) were observed in both cPDT and mPDT samples. Activation of cleaved Caspase-3 was specifically observed only in cPDT samples. Immunomodulation by inflammatory cells was observed by enhanced infiltration/retention of neutrophils and macrophages in metronomic PDT samples. Our results suggest that metronomic PDT can be just as effective as conventional PDT for treatment of AK, but the mechanisms may be quite different.

5.
Artigo em Inglês | MEDLINE | ID: mdl-30740528

RESUMO

AIM: Breast cancer (BCA) in women is a leading cause of mortality and morbidity; distant metastases occur in ~40% of cases. Here, as an alternative to ionizing radiation therapy and chemotherapy and their associated side effects, we explored a new combination approach using capecitabine (CPBN) and aminolevulinate-based photodynamic therapy (PDT). We had previously developed a combination PDT approach in which 5-fluorouracil (5FU), a differentiation-promoting agent, increases the levels of protoporphyrin IX (PpIX) in cancer cells when given as a neoadjuvant prior to aminolevulinic acid (ALA). However, 5FU can be toxic when administered systemically at high levels. We reasoned that CPBN, a known chemotherapeutic for BCA and less toxic than 5FU (because CPBN is metabolized to 5FU specifically within tumor tissues), might work equally well as a PDT neoadjuvant. METHODS: Murine 4T1 BCA cells harboring a luciferase transgene were injected into breast fat pads of female nude mice. CPBN (600 mg/kg/day) was administered by oral gavage for 3 days followed by intraperitoneal ALA administration and PDT with red light (633 nm) on day 4. Tumor growth and regression were monitored in vivo using bioluminescence imaging. Histological changes in primary tumors and metastases were assessed by immunohistochemistry after necropsy. RESULTS: CPBN pretreatment of 4T1 tumors increased cellular differentiation, reduced proliferation, raised PpIX levels, enhanced tumor cell death, and reduced metastatic spread of 4T1 cells post-PDT, relative to vehicle-only controls. CONCLUSION: The use of CPBN as a non-toxic PDT neoadjuvant for treatment of BCA represents a novel approach with significant potential for translation into the clinic.

6.
ACS Nano ; 12(4): 3714-3725, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29641905

RESUMO

Prostate cancer is one of the most common cancers and among the leading causes of cancer deaths in the United States. Men diagnosed with the disease typically undergo radical prostatectomy, which often results in incontinence and impotence. Recurrence of the disease is often experienced by most patients with incomplete prostatectomy during surgery. Hence, the development of a technique that will enable surgeons to achieve a more precise prostatectomy remains an open challenge. In this contribution, we report a theranostic agent (AuNP-5kPEG-PSMA-1-Pc4) based on prostate-specific membrane antigen (PSMA-1)-targeted gold nanoparticles (AuNPs) loaded with a fluorescent photodynamic therapy (PDT) drug, Pc4. The fabricated nanoparticles are well-characterized by spectroscopic and imaging techniques and are found to be stable over a wide range of solvents, buffers, and media. In vitro cellular uptake experiments demonstrated significantly higher nanoparticle uptake in PSMA-positive PC3pip cells than in PSMA-negative PC3flu cells. Further, more complete cell killing was observed in Pc3pip than in PC3flu cells upon exposure to light at different doses, demonstrating active targeting followed by Pc4 delivery. Likewise, in vivo studies showed remission on PSMA-expressing tumors 14 days post-PDT. Atomic absorption spectroscopy revealed that targeted AuNPs accumulate 4-fold higher in PC3pip than in PC3flu tumors. The nanoparticle system described herein is envisioned to provide surgical guidance for prostate tumor resection and therapeutic intervention when surgery is insufficient.


Assuntos
Antineoplásicos/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/farmacologia , Antígeno Prostático Específico/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Nanomedicina Teranóstica , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Peptídeos/síntese química , Peptídeos/química , Fotoquimioterapia , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA