Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 40(11): e108175, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33821503

RESUMO

While there is growing evidence that perturbation of the gut microbiota can result in a variety of pathologies including gut tumorigenesis, the influence of commensal fungi remains less clear. In this issue, Zhu et al (2021) show that mycobiota dysbiosis stimulates energy metabolism changes in subepithelial macrophages promoting colon cancer via enhancing innate lymphoid cell activity. These findings provide insights into a role of the gut flora in intestinal carcinogenesis and suggest opportunities for adjunctive antifungal or immunotherapeutic strategies to prevent colorectal cancer.


Assuntos
Disbiose , Microbioma Gastrointestinal , Carcinogênese , Humanos , Imunidade Inata , Linfócitos
2.
PLoS Pathog ; 19(7): e1011505, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37428810

RESUMO

Most microbes have developed responses that protect them against stresses relevant to their niches. Some that inhabit reasonably predictable environments have evolved anticipatory responses that protect against impending stresses that are likely to be encountered in their niches-termed "adaptive prediction". Unlike yeasts such as Saccharomyces cerevisiae, Kluyveromyces lactis and Yarrowia lipolytica and other pathogenic Candida species we examined, the major fungal pathogen of humans, Candida albicans, activates an oxidative stress response following exposure to physiological glucose levels before an oxidative stress is even encountered. Why? Using competition assays with isogenic barcoded strains, we show that "glucose-enhanced oxidative stress resistance" phenotype enhances the fitness of C. albicans during neutrophil attack and during systemic infection in mice. This anticipatory response is dependent on glucose signalling rather than glucose metabolism. Our analysis of C. albicans signalling mutants reveals that the phenotype is not dependent on the sugar receptor repressor pathway, but is modulated by the glucose repression pathway and down-regulated by the cyclic AMP-protein kinase A pathway. Changes in catalase or glutathione levels do not correlate with the phenotype, but resistance to hydrogen peroxide is dependent on glucose-enhanced trehalose accumulation. The data suggest that the evolution of this anticipatory response has involved the recruitment of conserved signalling pathways and downstream cellular responses, and that this phenotype protects C. albicans from innate immune killing, thereby promoting the fitness of C. albicans in host niches.


Assuntos
Candida albicans , Glucose , Humanos , Animais , Camundongos , Glucose/metabolismo , Estresse Oxidativo/fisiologia , Neutrófilos , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/metabolismo
3.
J Infect Dis ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446996

RESUMO

The interaction between the Candida albicans cell wall and pattern recognition receptors is crucial for the initiation of host immune responses which, ultimately, contribute to the clearance of this pathogenic fungus. In the present study, we investigate the ability of C. albicans mannans to modulate immune response and induce innate immune memory (also termed trained immunity). Using mutants of C. albicans that are defective in, or lack mannosyl residues, we show that alterations in the mannosylation of the C. albicans cell wall affect the innate cytokine response and strongly reduce the secretion of T cell-derived cytokines. Subsequently, we demonstrate that the branching of N-linked mannan, but not O-linked mannan, is essential to potentiate the induction of trained immunity, a process mediated by Dectin-2. In conclusion, N-linked mannan is needed, in addition to ß-glucans, for an effective induction of trained immunity by C. albicans.

4.
Nature ; 555(7696): 382-386, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29489751

RESUMO

Resistance to infection is critically dependent on the ability of pattern recognition receptors to recognize microbial invasion and induce protective immune responses. One such family of receptors are the C-type lectins, which are central to antifungal immunity. These receptors activate key effector mechanisms upon recognition of conserved fungal cell-wall carbohydrates. However, several other immunologically active fungal ligands have been described; these include melanin, for which the mechanism of recognition is hitherto undefined. Here we identify a C-type lectin receptor, melanin-sensing C-type lectin receptor (MelLec), that has an essential role in antifungal immunity through recognition of the naphthalene-diol unit of 1,8-dihydroxynaphthalene (DHN)-melanin. MelLec recognizes melanin in conidial spores of Aspergillus fumigatus as well as in other DHN-melanized fungi. MelLec is ubiquitously expressed by CD31+ endothelial cells in mice, and is also expressed by a sub-population of these cells that co-express epithelial cell adhesion molecule and are detected only in the lung and the liver. In mouse models, MelLec was required for protection against disseminated infection with A. fumigatus. In humans, MelLec is also expressed by myeloid cells, and we identified a single nucleotide polymorphism of this receptor that negatively affected myeloid inflammatory responses and significantly increased the susceptibility of stem-cell transplant recipients to disseminated Aspergillus infections. MelLec therefore recognizes an immunologically active component commonly found on fungi and has an essential role in protective antifungal immunity in both mice and humans.


Assuntos
Aspergillus fumigatus/imunologia , Lectinas Tipo C/imunologia , Melaninas/imunologia , Naftóis/imunologia , Animais , Aspergilose/imunologia , Aspergilose/microbiologia , Aspergilose/prevenção & controle , Aspergillus fumigatus/química , Aspergillus fumigatus/patogenicidade , Parede Celular/química , Parede Celular/imunologia , Feminino , Humanos , Macrófagos/imunologia , Melaninas/química , Camundongos , Camundongos Endogâmicos C57BL , Naftóis/química , Ratos , Ratos Sprague-Dawley , Esporos Fúngicos/química , Esporos Fúngicos/imunologia , Especificidade por Substrato
5.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876755

RESUMO

Innate immunity provides essential protection against life-threatening fungal infections. However, the outcomes of individual skirmishes between immune cells and fungal pathogens are not a foregone conclusion because some pathogens have evolved mechanisms to evade phagocytic recognition, engulfment, and killing. For example, Candida albicans can escape phagocytosis by activating cellular morphogenesis to form lengthy hyphae that are challenging to engulf. Through live imaging of C. albicans-macrophage interactions, we discovered that macrophages can counteract this by folding fungal hyphae. The folding of fungal hyphae is promoted by Dectin-1, ß2-integrin, VASP, actin-myosin polymerization, and cell motility. Folding facilitates the complete engulfment of long hyphae in some cases and it inhibits hyphal growth, presumably tipping the balance toward successful fungal clearance.


Assuntos
Candida albicans/patogenicidade , Hifas/citologia , Macrófagos/metabolismo , Fagocitose , Quinases Proteína-Quinases Ativadas por AMP , Actomiosina/metabolismo , Animais , Antígenos CD18/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Humanos , Hifas/patogenicidade , Lectinas Tipo C/metabolismo , Macrófagos/microbiologia , Camundongos , Proteínas Quinases/metabolismo , Células RAW 264.7
6.
J Cell Sci ; 134(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34792152

RESUMO

Echinocandins such as caspofungin are frontline antifungal drugs that compromise ß-1,3 glucan synthesis in the cell wall. Recent reports have shown that fungal cells can resist killing by caspofungin by upregulation of chitin synthesis, thereby sustaining cell wall integrity (CWI). When echinocandins are removed, the chitin content of cells quickly returns to basal levels, suggesting that there is a fitness cost associated with having elevated levels of chitin in the cell wall. We show here that simultaneous activation of the calcineurin and CWI pathways generates a subpopulation of Candida albicans yeast cells that have supra-normal chitin levels interspersed throughout the inner and outer cell wall, and that these cells are non-viable, perhaps due to loss of wall elasticity required for cell expansion and growth. Mutations in the Ca2+-calcineurin pathway prevented the formation of these non-viable supra-high chitin cells by negatively regulating chitin synthesis driven by the CWI pathway. The Ca2+-calcineurin pathway may therefore act as an attenuator that prevents the overproduction of chitin by coordinating both chitin upregulation and negative regulation of the CWI signaling pathway. This article has an associated First Person interview with the first author of the paper.


Assuntos
Calcineurina , Candida albicans , Calcineurina/genética , Candida albicans/genética , Parede Celular , Quitina , Proteínas Fúngicas , Humanos , Lipopeptídeos/farmacologia
7.
PLoS Pathog ; 16(1): e1007927, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999794

RESUMO

During the course of fungal infection, pathogen recognition by the innate immune system is critical to initiate efficient protective immune responses. The primary event that triggers immune responses is the binding of Pattern Recognition Receptors (PRRs), which are expressed at the surface of host immune cells, to Pathogen-Associated Molecular Patterns (PAMPs) located predominantly in the fungal cell wall. Most fungi have mannosylated PAMPs in their cell walls and these are recognized by a range of C-type lectin receptors (CTLs). However, the precise spatial distribution of the ligands that induce immune responses within the cell walls of fungi are not well defined. We used recombinant IgG Fc-CTLs fusions of three murine mannan detecting CTLs, including dectin-2, the mannose receptor (MR) carbohydrate recognition domains (CRDs) 4-7 (CRD4-7), and human DC-SIGN (hDC-SIGN) and of the ß-1,3 glucan-binding lectin dectin-1 to map PRR ligands in the fungal cell wall of fungi grown in vitro in rich and minimal media. We show that epitopes of mannan-specific CTL receptors can be clustered or diffuse, superficial or buried in the inner cell wall. We demonstrate that PRR ligands do not correlate well with phylogenetic relationships between fungi, and that Fc-lectin binding discriminated between mannosides expressed on different cell morphologies of the same fungus. We also demonstrate CTL epitope differentiation during different phases of the growth cycle of Candida albicans and that MR and DC-SIGN labelled outer chain N-mannans whilst dectin-2 labelled core N-mannans displayed deeper in the cell wall. These immune receptor maps of fungal walls of in vitro grown cells therefore reveal remarkable spatial, temporal and chemical diversity, indicating that the triggering of immune recognition events originates from multiple physical origins at the fungal cell surface.


Assuntos
Parede Celular/imunologia , Fungos/imunologia , Lectinas Tipo C/imunologia , Mananas/imunologia , Micoses/imunologia , Filogenia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Parede Celular/química , Parede Celular/genética , Fungos/química , Fungos/classificação , Fungos/genética , Humanos , Lectinas Tipo C/genética , Mananas/análise , Micoses/genética , Micoses/microbiologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia
8.
PLoS Pathog ; 16(1): e1008153, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999804

RESUMO

Human space travel is on the verge of visiting Mars and, in the future, even more distant places in the solar system. These journeys will be also made by terrestrial microorganisms (hitchhiking on the bodies of astronauts or on scientific instruments) that, upon arrival, will come into contact with new planetary environments, despite the best measures to prevent contamination. These microorganisms could potentially adapt and grow in the new environments and subsequently recolonize and infect astronauts. An even more challenging situation would be if truly alien microorganisms will be present on these solar system bodies: What will be their pathogenic potential, and how would our immune host defenses react? It will be crucial to anticipate these situations and investigate how the immune system of humans might cope with modified terrestrial or alien microbes. We propose several scenarios that may be encountered and how to respond to these challenges.


Assuntos
Equipamentos e Provisões/microbiologia , Interações Hospedeiro-Patógeno , Sistema Imunitário/imunologia , Astronautas , Exobiologia , Meio Ambiente Extraterreno , Humanos , Voo Espacial , Astronave
9.
Cell Microbiol ; 23(5): e13307, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33403715

RESUMO

The unfolded protein response (UPR), crucial for the maintenance of endoplasmic reticulum (ER) homeostasis, is tied to the regulation of multiple cellular processes in pathogenic fungi. Here, we show that Candida albicans relies on an ER-resident protein, inositol-requiring enzyme 1 (Ire1) for sensing ER stress and activating the UPR. Compromised Ire1 function impacts cellular processes that are dependent on functional secretory homeostasis, as inferred from transcriptional profiling. Concordantly, an Ire1-mutant strain exhibits pleiotropic roles in ER stress response, antifungal tolerance, cell wall regulation and virulence-related traits. Hac1 is the downstream target of C. albicans Ire1 as it initiates the unconventional splicing of the 19 bp intron from HAC1 mRNA during tunicamycin-induced ER stress. Ire1 also activates the UPR in response to perturbations in cell wall integrity and cell membrane homeostasis in a manner that does not necessitate the splicing of HAC1 mRNA. Furthermore, the Ire1-mutant strain is severely defective in hyphal morphogenesis and biofilm formation as well as in establishing a successful infection in vivo. Together, these findings demonstrate that C. albicans Ire1 functions to regulate traits that are essential for virulence and suggest its importance in responding to multiple stresses, thus integrating various stress signals to maintain ER homeostasis.


Assuntos
Candida albicans/patogenicidade , Candidíase/microbiologia , Estresse do Retículo Endoplasmático , Proteínas Fúngicas/metabolismo , Proteínas Quinases/metabolismo , Adaptação Fisiológica , Animais , Candida albicans/enzimologia , Candida albicans/genética , Candida albicans/fisiologia , Membrana Celular/fisiologia , Parede Celular/fisiologia , Retículo Endoplasmático/fisiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Homeostase , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases/genética , Splicing de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Virulência
10.
Cell Microbiol ; 22(2): e13140, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31736226

RESUMO

Hypoxic adaptation pathways, essential for Candida albicans pathogenesis, are tied to its transition from a commensal to a pathogen. Herein, we identify a WW domain-containing protein, Ifu5, as a determinant of hypoxic adaptation that also impacts normoxic responses in this fungus. Ifu5 activity supports glycosylation homeostasis via the Cek1 mitogen-activated protein kinase-dependent up-regulation of PMT1, under normoxia. Transcriptome analysis of ifu5Δ/Δ under normoxia shows a significant up-regulation of the hypoxic regulator EFG1 and EFG1-dependent genes. We demonstrate physical interaction between Ifu5 by virtue of its WW domain and Efg1 that represses EFG1 expression under normoxia. This interaction is lost under hypoxic growth conditions, relieving EFG1 repression. Hypoxic adaptation processes such as filamentation and biofilm formation are affected in ifu5Δ/Δ cells revealing the role of Ifu5 in hypoxic signalling and modulating pathogenicity traits of C. albicans under varied oxygen conditions. Additionally, the WW domain of Ifu5 facilitates its role in hypoxic adaptation, revealing the importance of this domain in providing a platform to integrate various cellular processes. These data forge a relationship between Efg1 and Ifu5 that fosters the role of Ifu5 in hypoxic adaptation thus illuminating novel strategies to undermine the growth of C. albicans.


Assuntos
Candida albicans/patogenicidade , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas , Virulência , Domínios WW
11.
Med Mycol ; 58(6): 744-755, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31912151

RESUMO

Candida auris is an emerging pathogenic yeast of significant clinical concern because of its frequent intrinsic resistance to fluconazole and often other antifungal drugs and the high mortality rates associated with systemic infections. Furthermore, C. auris has a propensity for persistence and transmission in health care environments. The reasons for this efficient transmission are not well understood, and therefore we tested whether enhanced resistance to environmental stresses might contribute to the ability of C. auris to spread in health care environments. We compared C. auris to other pathogenic Candida species with respect to their resistance to individual stresses and combinations of stresses. Stress resistance was examined using in vitro assays on laboratory media and also on hospital linen. In general, the 17 C. auris isolates examined displayed similar degrees of resistance to oxidative, nitrosative, cationic and cell wall stresses as clinical isolates of C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. krusei, C. guilliermondii, C. lusitaniae and C. kefyr. All of the C. auris isolates examined were more sensitive to low pH (pH 2, but not pH 4) compared to C. albicans, but were more resistant to high pH (pH 13). C. auris was also sensitive to low pH, when tested on contaminated hospital linen. Most C. auris isolates were relatively thermotolerant, displaying significant growth at 47°C. Furthermore, C. auris was relatively resistant to certain combinations of combinatorial stress (e.g., pH 13 plus 47°C). Significantly, C. auris was sensitive to the stress combinations imposed by hospital laundering protocol (pH > 12 plus heat shock at >80°C), suggesting that current laundering procedures are sufficient to limit the transmission of this fungal pathogen via hospital linen.


Assuntos
Candida/patogenicidade , Candidíase/transmissão , Meio Ambiente , Hospitais , Estresse Fisiológico , Antifúngicos/farmacologia , Roupas de Cama, Mesa e Banho/microbiologia , Candida/classificação , Candida/efeitos dos fármacos , Candidíase/microbiologia , Farmacorresistência Fúngica , Equipamentos e Provisões Hospitalares/microbiologia , Humanos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Estresse Nitrosativo , Estresse Oxidativo , Termotolerância
12.
Curr Genet ; 65(5): 1217-1228, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31020384

RESUMO

Candida auris is a newly emerged pathogenic microbe, having been identified as a medically relevant fungus as recently as 2009. It is one of the most drug-resistant yeast species known to date and its emergence and population structure are unusual. Because of its recent emergence, we are largely ignorant about fundamental aspects of its general biology, life cycle, and population dynamics. Here, we report the karyotype variability of 26 C. auris strains representing the four main clades. We demonstrate that all strains are haploid and have a highly plastic karyotype containing five to seven chromosomes, which can undergo marked alterations within a short time frame when the fungus is put under genotoxic, heat, or osmotic stress. No simple correlation was found between karyotype pattern, drug resistance, and clade affiliation indicating that karyotype heterogeneity is rapidly evolving. As with other Candida species, these marked karyotype differences between isolates are likely to have an important impact on pathogenic traits of C. auris.


Assuntos
Candida/genética , Haploidia , Cariótipo , Candidíase/microbiologia , Ciclo Celular , Cromossomos Fúngicos , Evolução Molecular , Genoma Fúngico , Estresse Fisiológico/genética
13.
PLoS Pathog ; 13(5): e1006405, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542620

RESUMO

Most fungal pathogens of humans display robust protective oxidative stress responses that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxygen species (ROS) is an essential component of these responses. We showed previously that ectopic expression of the heme-containing catalase enzyme in Candida albicans enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and phagocytic killing. Clearly ectopic catalase expression confers fitness advantages in the presence of stress, and therefore in this study we tested whether it enhances fitness in the absence of stress. We addressed this using a set of congenic barcoded C. albicans strains that include doxycycline-conditional tetON-CAT1 expressors. We show that high basal catalase levels, rather than CAT1 induction following stress imposition, reduce ROS accumulation and cell death, thereby promoting resistance to acute peroxide or combinatorial stress. This conclusion is reinforced by our analyses of phenotypically diverse clinical isolates and the impact of stochastic variation in catalase expression upon stress resistance in genetically homogeneous C. albicans populations. Accordingly, cat1Δ cells are more sensitive to neutrophil killing. However, we find that catalase inactivation does not attenuate C. albicans virulence in mouse or invertebrate models of systemic candidiasis. Furthermore, our direct comparisons of fitness in vitro using isogenic barcoded CAT1, cat1Δ and tetON-CAT1 strains show that, while ectopic catalase expression confers a fitness advantage during peroxide stress, it confers a fitness defect in the absence of stress. This fitness defect is suppressed by iron supplementation. Also high basal catalase levels induce key iron assimilatory functions (CFL5, FET3, FRP1, FTR1). We conclude that while high basal catalase levels enhance peroxide stress resistance, they place pressure on iron homeostasis through an elevated cellular demand for iron, thereby reducing the fitness of C. albicans in iron-limiting tissues within the host.


Assuntos
Candida albicans/enzimologia , Candidíase/microbiologia , Catalase/metabolismo , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Animais , Candida albicans/genética , Candida albicans/metabolismo , Catalase/genética , Feminino , Proteínas Fúngicas/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo
14.
Mycoses ; 62(10): 920-927, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31271702

RESUMO

BACKGROUND: Recent outbreaks of Candida auris further exemplify that invasive Candida infections are a substantial threat to patients and healthcare systems. Even short treatment delays are associated with higher mortality rates. Epidemiological shifts towards more resistant Candida spp. require careful surveillance. OBJECTIVES: Triggered by the emergence of C auris and by increasing antifungal resistance rates the European Confederation of Medical Mycology developed an international Candida Registry (FungiScope™ CandiReg) to allow contemporary multinational surveillance. METHODS: CandiReg serves as platform for international cooperation to enhance research regarding invasive Candida infections. CandiReg uses the General Data Protection Regulation compliant data platform ClinicalSurveys.net that holds the electronic case report forms (eCRF). Data entry is supported via an interactive macro created by the software that can be accessed via any Internet browser. RESULTS: CandiReg provides an eCRF for invasive Candida infections that can be used for a variety of studies from cohort studies on attributable mortality to evaluations of guideline adherence, offering to the investigators of the 28 ECMM member countries the opportunity to document their cases of invasive Candida infection. CandiReg allows the monitoring of epidemiology of invasive Candida infections, including monitoring of multinational outbreaks. Here, we describe the structure and management of the CandiReg platform. CONCLUSION: CandiReg supports the collection of clinical information and isolates to improve the knowledge on epidemiology and eventually to improve management of invasive Candida infections. CandiReg promotes international collaboration, improving the availability and quality of evidence on invasive Candida infection and contributes to improved patient management.


Assuntos
Candidíase Invasiva/epidemiologia , Candidíase Invasiva/microbiologia , Bases de Dados Factuais , Surtos de Doenças , Sistema de Registros , Candidíase Invasiva/patologia , Monitoramento Epidemiológico , Feminino , Saúde Global , Humanos , Masculino
15.
PLoS Pathog ; 12(4): e1005566, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27073846

RESUMO

Efficient carbon assimilation is critical for microbial growth and pathogenesis. The environmental yeast Saccharomyces cerevisiae is "Crabtree positive", displaying a rapid metabolic switch from the assimilation of alternative carbon sources to sugars. Following exposure to sugars, this switch is mediated by the transcriptional repression of genes (carbon catabolite repression) and the turnover (catabolite inactivation) of enzymes involved in the assimilation of alternative carbon sources. The pathogenic yeast Candida albicans is Crabtree negative. It has retained carbon catabolite repression mechanisms, but has undergone posttranscriptional rewiring such that gluconeogenic and glyoxylate cycle enzymes are not subject to ubiquitin-mediated catabolite inactivation. Consequently, when glucose becomes available, C. albicans can continue to assimilate alternative carbon sources alongside the glucose. We show that this metabolic flexibility promotes host colonization and virulence. The glyoxylate cycle enzyme isocitrate lyase (CaIcl1) was rendered sensitive to ubiquitin-mediated catabolite inactivation in C. albicans by addition of a ubiquitination site. This mutation, which inhibits lactate assimilation in the presence of glucose, reduces the ability of C. albicans cells to withstand macrophage killing, colonize the gastrointestinal tract and cause systemic infections in mice. Interestingly, most S. cerevisiae clinical isolates we examined (67%) have acquired the ability to assimilate lactate in the presence of glucose (i.e. they have become Crabtree negative). These S. cerevisiae strains are more resistant to macrophage killing than Crabtree positive clinical isolates. Moreover, Crabtree negative S. cerevisiae mutants that lack Gid8, a key component of the Glucose-Induced Degradation complex, are more resistant to macrophage killing and display increased virulence in immunocompromised mice. Thus, while Crabtree positivity might impart a fitness advantage for yeasts in environmental niches, the more flexible carbon assimilation strategies offered by Crabtree negativity enhance the ability of yeasts to colonize and infect the mammalian host.


Assuntos
Candida albicans/metabolismo , Candida albicans/patogenicidade , Candidíase/metabolismo , Macrófagos/microbiologia , Saccharomyces cerevisiae/metabolismo , Virulência/fisiologia , Animais , Western Blotting , Metabolismo dos Carboidratos , Linhagem Celular , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Ubiquitinação
16.
Microbiology (Reading) ; 163(8): 1145-1147, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28809155

RESUMO

Candida albicans is normally a harmless commensal of human beings, but it can cause superficial infections of the mucosa (oral/vaginal thrush) in healthy individuals and (rarely) infections of the skin or nails. It can also become invasive, causing life-threatening systemic and bloodstream infections in immunocompromised hosts, where the mortality rate can be as high as 50 %. It is the most common cause of serious fungal infection and is a common cause of nosocomial infections in hospitals. Some strains have been recognized that are resistant to azoles or echinocandins, which are the first-line antifungals for treatment of C. albicans infections.


Assuntos
Candida albicans/metabolismo , Candidíase/microbiologia , Infecção Hospitalar/microbiologia , Infecções Oportunistas/microbiologia , Antifúngicos/farmacologia , Candida albicans/classificação , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Farmacorresistência Fúngica , Evolução Molecular , Genoma Fúngico , Humanos
17.
Proc Natl Acad Sci U S A ; 111(2): 811-6, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24385582

RESUMO

Polarized cells reorient their direction of growth in response to environmental cues. In the fungus Candida albicans, the Rho-family small GTPase, Cdc42, is essential for polarized hyphal growth and Ca(2+) influx is required for the tropic responses of hyphae to environmental cues, but the regulatory link between these systems is unclear. In this study, the interaction between Ca(2+) influx and Cdc42 polarity-complex dynamics was investigated using hyphal galvanotropic and thigmotropic responses as reporter systems. During polarity establishment in an applied electric field, cathodal emergence of hyphae was lost when either of the two Cdc42 apical recycling pathways was disrupted by deletion of Rdi1, a guanine nucleotide dissociation inhibitor, or Bnr1, a formin, but was completely restored by extracellular Ca(2+). Loss of the Cdc42 GTPase activating proteins, Rga2 and Bem3, also abolished cathodal polarization, but this was not rescued by Ca(2+). Expression of GTP-locked Cdc42 reversed the polarity of hypha emergence from cathodal to anodal, an effect augmented by Ca(2+). The cathodal directional cue therefore requires Cdc42 GTP hydrolysis. Ca(2+) influx amplifies Cdc42-mediated directional growth signals, in part by augmenting Cdc42 apical trafficking. The Ca(2+)-binding EF-hand motif in Cdc24, the Cdc42 activator, was essential for growth in yeast cells but not in established hyphae. The Cdc24 EF-hand motif is therefore essential for polarity establishment but not for polarity maintenance.


Assuntos
Cálcio/metabolismo , Candida albicans/fisiologia , Crescimento Celular , Membrana Celular/metabolismo , Polaridade Celular/fisiologia , Modelos Biológicos , Proteína cdc42 de Ligação ao GTP/metabolismo , Análise de Variância , Candida albicans/ultraestrutura , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência
18.
PLoS Pathog ; 10(4): e1004050, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24722226

RESUMO

Chitin is an essential structural polysaccharide of fungal pathogens and parasites, but its role in human immune responses remains largely unknown. It is the second most abundant polysaccharide in nature after cellulose and its derivatives today are widely used for medical and industrial purposes. We analysed the immunological properties of purified chitin particles derived from the opportunistic human fungal pathogen Candida albicans, which led to the selective secretion of the anti-inflammatory cytokine IL-10. We identified NOD2, TLR9 and the mannose receptor as essential fungal chitin-recognition receptors for the induction of this response. Chitin reduced LPS-induced inflammation in vivo and may therefore contribute to the resolution of the immune response once the pathogen has been defeated. Fungal chitin also induced eosinophilia in vivo, underpinning its ability to induce asthma. Polymorphisms in the identified chitin receptors, NOD2 and TLR9, predispose individuals to inflammatory conditions and dysregulated expression of chitinases and chitinase-like binding proteins, whose activity is essential to generate IL-10-inducing fungal chitin particles in vitro, have also been linked to inflammatory conditions and asthma. Chitin recognition is therefore critical for immune homeostasis and is likely to have a significant role in infectious and allergic disease.


Assuntos
Candida albicans/química , Quitina/imunologia , Interleucina-10/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Receptor Toll-Like 9/imunologia , Animais , Asma/genética , Asma/imunologia , Asma/patologia , Candida albicans/imunologia , Quitina/química , Feminino , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-10/genética , Masculino , Camundongos , Proteína Adaptadora de Sinalização NOD2/genética , Receptor Toll-Like 9/genética
19.
Cell Microbiol ; 17(4): 445-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25346172

RESUMO

The ability of Candida albicans to cause disease is associated with its capacity to undergo morphological transition between yeast and filamentous forms, but the role of morphology in colonization and dissemination from the gastrointestinal (GI) tract remains poorly defined. To explore this, we made use of wild-type and morphological mutants of C. albicans in an established model of GI tract colonization, induced following antibiotic treatment of mice. Our data reveal that GI tract colonization favours the yeast form of C. albicans, that there is constitutive low level systemic dissemination in colonized mice that occurs irrespective of fungal morphology, and that colonization is not controlled by Th17 immunity in otherwise immunocompetent animals. These data provide new insights into the mechanisms of pathogenesis and commensalism of C. albicans, and have implications for our understanding of human disease.


Assuntos
Candida albicans/citologia , Candida albicans/fisiologia , Candidíase/imunologia , Candidíase/microbiologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Células Th17/imunologia , Animais , Candida albicans/crescimento & desenvolvimento , Candida albicans/imunologia , Modelos Animais de Doenças , Camundongos
20.
Eukaryot Cell ; 14(7): 684-97, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26002719

RESUMO

The yeast exocyst is a multiprotein complex comprised of eight subunits (Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84) which orchestrates trafficking of exocytic vesicles to specific docking sites on the plasma membrane during polarized secretion. To study SEC6 function in Candida albicans, we generated a conditional mutant strain in which SEC6 was placed under the control of a tetracycline-regulated promoter. In the repressed state, the tetR-SEC6 mutant strain (denoted tSEC6) was viable for up to 27 h; thus, all phenotypic analyses were performed at 24 h or earlier. Strain tSEC6 under repressing conditions had readily apparent defects in cytokinesis and endocytosis and accumulated both post-Golgi apparatus secretory vesicles and structures suggestive of late endosomes. Strain tSEC6 was markedly defective in secretion of aspartyl proteases and lipases as well as filamentation under repressing conditions. Lack of SEC6 expression resulted in markedly reduced lateral hyphal branching, which requires the establishment of a new axis of polarized secretion. Aberrant localization of chitin at the septum and increased resistance to zymolyase activity were observed, suggesting that C. albicans Sec6 plays an important role in mediating trafficking and delivery of cell wall components. The tSEC6 mutant was also markedly defective in macrophage killing, indicating a role of SEC6 in C. albicans virulence. Taken together, these studies indicate that the late secretory protein Sec6 is required for polarized secretion, hyphal morphogenesis, and the pathogenesis of C. albicans.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candidíase/microbiologia , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas/crescimento & desenvolvimento , Macrófagos/patologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Candida albicans/genética , Candida albicans/metabolismo , Candidíase/genética , Candidíase/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular , Exocitose/fisiologia , Proteínas Fúngicas/genética , Hifas/genética , Hifas/metabolismo , Macrófagos/microbiologia , Camundongos , Mutação/genética , Transporte Proteico , Vesículas Secretórias/metabolismo , Proteínas de Transporte Vesicular/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA