Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 137: 106593, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37186964

RESUMO

The current regime for leishmaniasis is associated with several adverse effects, expensive, parenteral treatment for longer periods and the emergence of drug resistance. To develop affordable and potent antileishmanial agents, a series of N-acyl and homodimeric aryl piperazines were synthesized with high purity, predicted druggable properties by in silico methods and investigated their antileishmanial activity. The in vitro biological activity of synthesized compounds against clinically validated intracellular amastigote and extracellular promastigote form of Leishmania donovani parasite showed eight compounds inhibited 50% amastigotes growth below 25 µM. The half maximal inhibitory concentration (IC50) and cytotoxicity assessment of eight active compounds, 4a, 4d and 4e demonstrated activity with an IC50 2.0 - 9.1 µM and selectivity index 10 - 42. Compound 4d (IC50 2.0 µM, SI = 42) found to be the best among them with four-folds more potent and eight-folds less toxic than the control drug miltefosine. Overall, results demonstrated that compound 4d is a promising lead candidate for further development as antileishmanial drug.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose , Humanos , Leishmaniose/tratamento farmacológico
2.
Antimicrob Agents Chemother ; 66(8): e0236121, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35852367

RESUMO

Chemotherapy is the key intervention to control visceral leishmaniasis (VL), a neglected tropical disease. Current regimens include not only a few drugs but also present several drawbacks, including moderate to severe toxicity, cost, long-term administration, patient compliance, and growing drug resistance. Thus, the need for better treatment options against VL is a priority. In an endeavor to find an orally active and affordable antileishmanial agent, we evaluated the therapeutic potential of compounds belonging to the (2Z,2'Z)-3,3'-(ethane-1,2-diylbis(azanediyl))bis(1-(4-halophenyl)-6-hydroxyhex-2-en-1-ones) series, identified as inhibitor(s) of Leishmania donovani dipeptidylcarboxypeptidase, a novel drug target. Among them, compound 3c exhibited best in vivo antileishmanial efficacy via both intraperitoneal and oral routes. Therefore, the present study led to the identification of compound 3c as the lead candidate for treating VL.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Administração Oral , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Resistência a Medicamentos , Humanos , Leishmaniose Visceral/tratamento farmacológico
3.
Cell Immunol ; 375: 104529, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500334

RESUMO

Visceral leishmaniasis is one of the deadliest parasitic diseases in the world. In the absence of an efficient and cost-effective drugs, development of an effective vaccine is the need of the day. In spite of several efforts, a successful vaccine against the disease has been elusive. We have evaluated immunoprophylactic efficacy of recombinant dipeptidycarboxypeptidase (rLdDCP), predominantly expressed in amastigotes, in chronic hamster model. rLdDCP induced in vitro lymphoproliferation and NO production in cured hamsters. Immunization with rLdDCP alone, or with BCG, caused significant reduction in parasite load suggesting strong protective response. The molecule also augmented the CMI response as depicted by an increased lymphocyte proliferation, NO production, DTH responses and increased levels of IgG2 in immunized hamsters. The vaccinated hamsters exhibited a surge in IFN-γ, TNF-α, IL-12 and iNOS levels but down-regulation of IL-10 and IL-4. Thus, the results suggest the potentiality of the rLdDCP as a strong candidate vaccine.


Assuntos
Leishmania donovani , Vacinas contra Leishmaniose , Leishmaniose Visceral , Vacinas , Animais , Antígenos de Protozoários , Cricetinae , Interleucina-12 , Células Th1
4.
Microb Pathog ; 169: 105616, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35680007

RESUMO

T-complex protein-1 (TCP1) is a group II chaperonin, known to fold various proteins like actin and tubulin. In Leishmania donovani only one subunit that is gamma subunit (LdTCP1γ) has been functionally characterized as a homo-oligomeric complex that exhibits ATP-dependent protein folding. The gene is essential for the survival and infectivity of the parasite. Leishmania parasite releases extracellular vesicles (EVs) containing numerous virulence factors, which play an essential role in parasite pathogenesis and modulate host immune cell signaling. The present study demonstrates that LdTCP1γ is secreted in the EVs and modulates host macrophage functions. EVs isolated from LdTCP1γ single-allele-replacement mutants significantly upregulate the microbicidal function of LPS-induced macrophage as evident by increased levels of proinflammatory cytokines (TNF-α, IL-6), iNOS and NO production. Further, the comparative proteomics of wild-type and single-allele-replacement mutant EVs showed that out of 876 identified proteins, 207 were significantly modulated. Among them, the top 50 modulated and abundantly secreted proteins constitute ∼40% of the total identified protein intensity and include virulence factors such as GP63, peroxiredoxin, enolase, HSP70, elongation factor 2, amastin, eukaryotic translation initiation factor and α-tubulin. The comparative proteomic analysis revealed that the proteome enrichment of the EVs from LdTCP1γ single-allele replacement mutants significantly differs from wild-type EVs, which may be responsible for the altered host microbicidal responses. Thus, our data provide new insight into the role of LdTCP1γ in EVs-mediated host-parasite interactions.


Assuntos
Vesículas Extracelulares , Leishmania donovani , Chaperonina com TCP-1/genética , Chaperonina com TCP-1/metabolismo , Regulação para Baixo , Vesículas Extracelulares/metabolismo , Leishmania donovani/genética , Macrófagos , Proteômica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Tubulina (Proteína)/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-32457112

RESUMO

T-complex protein-1 (TCP1) is a ubiquitous group II chaperonin and is known to fold various proteins, such as actin and tubulin. In Leishmania donovani, the γ subunit of TCP1 (LdTCP1γ) has been cloned and characterized. It forms a high-molecular-weight homo-oligomeric complex that performs ATP-dependent protein folding. In the present study, we evaluated the essentiality of the LdTCP1γ gene. Gene replacement studies indicated that LdTCP1γ is essential for parasite survival. The LdTCP1γ single-allele-replacement mutants exhibited slowed growth and decreased infectivity in mouse macrophages compared to the growth and infectivity of the wild-type parasites. Modulation of LdTCP1γ expression in promastigotes also modulated cell cycle progression. Suramin, an antitrypanosomal drug, not only inhibited the luciferase refolding activity of the recombinant LdTCP1γ (rLdTCP1γ) homo-oligomeric complex but also exhibited potential antileishmanial efficacy both in vitro and in vivo The interaction of suramin and LdTCP1γ was further validated by isothermal titration calorimetry. The study suggests LdTCP1γ as a potential drug target and also provides a framework for the development of a new class of drugs.


Assuntos
Chaperonina com TCP-1/fisiologia , Leishmania donovani , Actinas , Animais , Antiprotozoários/farmacologia , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/patogenicidade , Macrófagos , Camundongos , Suramina/farmacologia , Tubulina (Proteína)
6.
Artigo em Inglês | MEDLINE | ID: mdl-28031196

RESUMO

Leishmaniasis chemotherapy remains very challenging due to high cost of the drug and its associated toxicity and drug resistance, which develops over a period of time. Combination therapies (CT) are now in use to treat many diseases, such as cancer and malaria, since it is more effective and affordable than monotherapy. CT are believed to represent a new explorable strategy for leishmaniasis, a neglected tropical disease caused by the obligate intracellular parasite Leishmania In the present study, we investigated the effect of a combination of a traditional Indian medicine (ayurveda), a natural product curcumin and miltefosine, the only oral drug for visceral leishmaniasis (VL) using a Leishmania donovani-hamster model. We developed an oral nanoparticle-based formulation of curcumin. Nanoformulation of curcumin alone exhibited significant leishmanicidal activity both in vitro and in vivo In combination with miltefosine, it exhibited a synergistic effect on both promastigotes and amastigotes under in vitro conditions. The combination of these two agents also demonstrated increased in vivo leishmanicidal activity accompanied by increased production of toxic reactive oxygen/nitrogen metabolites and enhanced phagocytic activity. The combination also exhibited increased lymphocyte proliferation. The present study thus establishes the possible use of nanocurcumin as an adjunct to antileishmanial chemotherapy.


Assuntos
Antiprotozoários/farmacologia , Curcumina/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Nanopartículas/administração & dosagem , Fosforilcolina/análogos & derivados , Administração Oral , Animais , Proliferação de Células/efeitos dos fármacos , Cricetinae , Modelos Animais de Doenças , Portadores de Fármacos , Combinação de Medicamentos , Resistência a Medicamentos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Leishmania donovani/crescimento & desenvolvimento , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Masculino , Ayurveda , Nanopartículas/ultraestrutura , Fagocitose/efeitos dos fármacos , Fosforilcolina/farmacologia , Espécies Reativas de Nitrogênio/agonistas , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo
7.
Antimicrob Agents Chemother ; 59(7): 3853-63, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25870075

RESUMO

Emergence of resistance to pentavalent antimonials has become a severe obstacle in the treatment of visceral leishmaniasis (VL) in the Indian subcontinent. Mitogen-activated protein kinases (MAPKs) are well-known mediators of signal transduction of eukaryotes, regulating important processes, like proliferation, differentiation, stress response, and apoptosis. In Leishmania, MAPK1 has been shown to be consistently downregulated in antimony-resistant field isolates, suggesting that it has a role in antimony resistance. The present work investigates the molecular mechanism of MAPK1 in antimony resistance in Leishmania donovani. The L. donovani MAPK1 (LdMAPK1) single-allele replacement mutants exhibited increased resistance to Sb(III) (5.57-fold) compared to wild-type promastigotes, while overexpressing parasites became much more susceptible to antimony. The LdMAPK1-mediated drug sensitivity was directly related to antimony-induced apoptotic death of the parasite, as was evidenced by a 4- to 5-fold decrease in cell death parameters in deletion mutants and a 2- to 3-fold increase in MAPK1-overexpressing cells. LdMAPK1-underexpressing parasites also exhibited increased P-glycoprotein (P-gp)-mediated efflux pump activity, while a significant decrease in pump activity was observed in overexpressing cells. This change in efflux pump activity was directly related to expression levels of P-gp in all cell lines. However, episomal complementation of the gene restored normal growth, drug sensitivity, P-gp expression, and efflux pump activity. The data indicate that LdMAPK1 negatively regulates the expression of P-glycoprotein-type efflux pumps in the parasite. The decrease in efflux pump activity with an increase in LdMAPK1 expression may result in increased antimony accumulation in the parasite, making it more vulnerable to the drug.


Assuntos
Antimônio/farmacologia , Transporte Biológico Ativo/fisiologia , Resistência a Medicamentos/genética , Leishmania donovani/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Apoptose/genética , Transporte Biológico Ativo/genética , Caspase 3/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Técnicas de Inativação de Genes , Leishmania donovani/enzimologia , Leishmania donovani/genética , Leishmaniose Visceral/tratamento farmacológico , Macrófagos/parasitologia , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/biossíntese , Dados de Sequência Molecular , Fosfatidilserinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Gene ; 926: 148637, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38844270

RESUMO

The cytosolic T-complex protein-1 ring complex (TRiC), also referred as chaperonin containing TCP-1(CCT), comprising eight different subunits stacked in double toroidal rings, binds to around 10 % of newly synthesized polypeptides and facilitates their folding in ATP dependent manner. In Leishmania, among five subunits of TCP1 complex, identified either by transcriptome or by proteome analysis, only LdTCP1γ has been well characterized. It forms biologically active homo-oligomeric complex and plays role in protein folding and parasite survival. Lack of information regarding rest of the TCP1 subunits and its structural configuration laid down the necessity to study individual subunits and their role in parasite pathogenicity. The present study involves the cloning, expression and biochemical characterization of TCP1ε subunit (LdTCP1ε) of Leishmania donovani, the causative agent of visceral leishmaniasis. LdTCP1ε exhibited significant difference in primary structure as compared to LdTCP1γ and was evolutionary close to LdTCP1 zeta subunit. Recombinant protein (rLdTCP1ε) exhibited two major bands of 132 kDa and 240 kDa on native-PAGE that corresponds to the dimeric and tetrameric assembly of the epsilon subunit, which showed the chaperonin activity (ATPase and luciferase refolding activity). LdTCP1ε also displayed an increased expression upto 2.7- and 1.8-fold in the late log phase and stationary phase promastigotes and exhibited majorly vesicular localization. The study, thus for the first time, provides an insight for the presence of highly diverge but functionally active dimeric/tetrameric TCP1 epsilon subunit in Leishmania parasite.


Assuntos
Chaperonina com TCP-1 , Leishmania donovani , Proteínas de Protozoários , Leishmania donovani/genética , Leishmania donovani/metabolismo , Chaperonina com TCP-1/metabolismo , Chaperonina com TCP-1/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Multimerização Proteica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética , Clonagem Molecular , Sequência de Aminoácidos , Chaperoninas/metabolismo , Chaperoninas/genética , Dobramento de Proteína
9.
Eur J Med Chem ; 246: 114996, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565533

RESUMO

The available therapeutic treatment for leishmaniasis is inadequate and toxic due to side effects, expensive and emergence of drug resistance. Affordable and safe antileishmanial agents are urgently needed and toward this objective, we synthesized a series of 32 novel halogen rich salicylanilides including niclosamide and oxyclozanide and investigated their antileishmanial activity against amastigotes of Leishmania donovani. In vitro data showed fifteen compounds inhibited intracellular amastigotes with an IC50 of below 5 µM and selectivity index above 10. Among 15 active compounds, 14 and 24 demonstrated better activity with an IC50 of 2.89 µM and 2.09 µM respectively and selectivity index is 18. Compound 24 exhibited significant in vivo antileishmanial efficacy and reduced 65% of the splenic parasite load on day 28th post-treatment in the experimental visceral leishmaniasis golden hamster model. The data suggest that 24 can be a promising lead candidate possessing potential to be developed into a leishmanial drug candidate.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Leishmaniose , Cricetinae , Animais , Salicilanilidas/farmacologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose/tratamento farmacológico
10.
Eur J Med Chem ; 261: 115863, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37837672

RESUMO

In pursuance of our efforts to expand the scope of novel antileishmanial entities, a series of thirty-five quinoline-piperazine/pyrrolidine, and other heterocyclic amine derivatives were synthesized via a molecular hybridization approach and examined against intracellular amastigotes of luciferase-expressing Leishmania donovani. The preliminary in vitro screening suggests that twelve compounds in the series exhibited better inhibition against amastigote form with good IC50 values ranging from 2.09 to 8.89 µM and lesser cytotoxicity in contrast to the standard drug miltefosine (IC50 9.25 ± 0.17 µM). Based on the satisfactory selectivity index (SI), two compounds were tested for in vivo leishmanicidal efficacy against Leishmania donovani/golden hamster model. Compounds 33 and 46 have shown significant inhibition of 56.32%, and 49.29%, respectively, in vivo screening at a daily dose of 50 mg/kg for 5 days. The pharmacokinetic results confirmed that 33 and 46 have satisfactory IP exposure with adequate parameters. Collectively, Compound 33 was identified as the most significant potential lead that could be employed as a prototype for future optimizations.


Assuntos
Antiprotozoários , Leishmania donovani , Quinolinas , Piperazina , Quinolinas/farmacologia
11.
RSC Med Chem ; 14(6): 1131-1142, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37360388

RESUMO

In the quest to discover novel scaffolds with leishmanicidal effects, a series of 23 compounds containing the most promising 1,2,3-triazole and highly potent butenolide in one framework were synthesized. The synthesized conjugates were screened against Leishmania donovani parasite; five of them showed moderate antileishmanial activity against promastigotes (IC50 30.6 to 35.5 µM) and eight of them exhibited significant activity against amastigotes (IC50 ≤12 µM). Compound 10u was found to be the most active (IC50 8.4 ± 0.12 µM) with the highest safety index (20.47). The series was further evaluated against Plasmodium falciparum (3D7 strain) and seven compounds were found to be moderately active. Among them, again 10u emerged as the most active compound (IC50 3.65 µM). In antifilarial assays against adult female Brugia malayi, five compounds showed grade II inhibition (50-74%). Structure-activity relationship (SAR) analysis suggested a substituted phenyl ring, triazole and butenolide as essential structural features for bioactivity. Moreover, the results of in silico ADME parameter and pharmacokinetic studies indicated that the synthesized triazole-butenolide conjugates abide by the required criteria for the development of orally active drugs, and thus this scaffold can be used as a pharmacologically active framework that should be considered for the development of potential antileishmanial hits.

12.
Antimicrob Agents Chemother ; 56(1): 518-25, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22064540

RESUMO

Emergence of resistance to pentavalent antimonials has become a severe obstacle in the treatment of visceral leishmaniasis (VL) on the Indian subcontinent. The mechanisms operating in laboratory-generated strains are somewhat known, but the determinants of clinical antimony resistance are not well understood. By utilizing a DNA microarray expression profiling approach, we identified a gene encoding mitogen-activated protein kinase 1 (MAPK1) for the kinetoplast protozoan Leishmania donovani (LdMAPK1) that was consistently downregulated in antimony-resistant field isolates. The expression level of the gene was validated by real-time PCR. Furthermore, decreased expression of LdMAPK1 was also confirmed at the protein level in resistant isolates. Primary structure analysis of LdMAPK1 revealed the presence of all of the characteristic features of MAPK1. When expressed in Escherichia coli, the recombinant enzyme showed kinase activity with myelin basic protein as the substrate and was inhibited by staurosporine. Interestingly, overexpression of this gene in a drug-sensitive laboratory strain and a resistant field isolate resulted in increased the sensitivity of the transfectants to potassium antimony tartrate, suggesting that it has a role in antimony resistance. Our results demonstrate that downregulation of LdMAPK1 may be in part correlated with antimony drug resistance in Indian VL isolates.


Assuntos
Antimônio/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Proteína Quinase 1 Ativada por Mitógeno/genética , Antiprotozoários/farmacologia , Regulação para Baixo , Resistência a Medicamentos , Escherichia coli , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Índia , Cinética , Leishmania donovani/genética , Leishmania donovani/isolamento & purificação , Leishmaniose Visceral/parasitologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Bainha de Mielina/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Testes de Sensibilidade Parasitária , Proteínas de Protozoários/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/genética , Estaurosporina/farmacologia
13.
Biochem Biophys Res Commun ; 429(1-2): 70-4, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23137535

RESUMO

T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complex (TCP1γ), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1γ of Leishmania donovani (LdTCP1γ), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1γ revealed the presence of all the characteristic features of TCP1γ. However, leishmanial TCP1γ represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1γ exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1γ as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1γ was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1γ with actin suggests that, this gene may have a role in maintaining the structural dynamics of cytoskeleton of parasite.


Assuntos
Chaperonina com TCP-1/metabolismo , Leishmania donovani/metabolismo , Proteínas de Protozoários/metabolismo , Actinas/metabolismo , Chaperonina com TCP-1/classificação , Chaperonina com TCP-1/genética , Clonagem Molecular , Leishmania donovani/genética , Filogenia , Estrutura Terciária de Proteína , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética
14.
Curr Microbiol ; 65(6): 696-700, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22945482

RESUMO

The development of new therapeutic leads against leishmaniasis relies primarily on screening of a large number of compounds on multiplication of clinically irrelevant transgenic promastigotes. The advent of the successful in vitro culture of axenic amastigotes allows the development of transgenic axenic amastigotes as a primary screen which can test compounds in a high throughput mode like promastigotes, still representative of the clinically relevant mammalian amastigotes stage. The present study reports the development of luciferase-tagged axenic amastigotes of Leishmania donovani, the causative agent of Indian Kala-azar, for in vitro drug screening. Luciferase expressing promastigotes were transformed to axenic amastigotes at a low pH and high temperature without the loss of luciferase expression. As compared to transgenic promastigotes, the luciferase expressing axenic amastigotes exhibited more sensitivity to antileishmanial drugs, particularly to pentavalent antimony (~2.8-fold) and also to the test compounds. Hence, the developed luciferase expressing axenic amastigotes make an ideal choice for high throughput drug screening for antileishmanial compounds.


Assuntos
Antiprotozoários/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Luciferases/metabolismo , Animais , Antimônio/farmacologia , Gluconato de Antimônio e Sódio/farmacologia , Meios de Cultura , Avaliação Pré-Clínica de Medicamentos , Humanos , Leishmania donovani/enzimologia , Leishmania donovani/genética , Leishmaniose Visceral/parasitologia , Luciferases/genética , Testes de Sensibilidade Parasitária
15.
Biochimie ; 193: 78-89, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34706251

RESUMO

Protozoan parasites with complex life cycles have high mortality rates affecting billions of human lives. Available anti-parasitic drugs are inadequate due to variable efficacy, toxicity, poor patient compliance and drug-resistance. Hence, there is an urgent need for the development of safer and better chemotherapeutics. Mitogen Activated Protein Kinases (MAPKs) have drawn much attention as potential drug targets. This review summarizes unique structural and functional features of MAP kinases and their possible role in pathogenesis of obligate intracellular protozoan parasites namely, Leishmania, Trypanosoma, Plasmodium and Toxoplasma. It also provides an overview of available knowledge concerning the target proteins of parasite MAPKs and the need to understand and unravel unknown interaction network(s) of MAPK(s).


Assuntos
Leishmania , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Plasmodium , Proteínas de Protozoários/metabolismo , Toxoplasma , Trypanosoma , Animais , Antiparasitários/uso terapêutico , Resistência a Medicamentos , Humanos , Leishmania/enzimologia , Leishmania/patogenicidade , Doenças Parasitárias/tratamento farmacológico , Doenças Parasitárias/enzimologia , Doenças Parasitárias/parasitologia , Plasmodium/enzimologia , Plasmodium/patogenicidade , Toxoplasma/enzimologia , Toxoplasma/patogenicidade , Trypanosoma/enzimologia , Trypanosoma/patogenicidade
16.
Mol Immunol ; 141: 33-42, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798496

RESUMO

Visceral leishmaniasis (VL) is a chronic tropical disease responsible for devastating epidemics worldwide. Though current treatment relies on drugs, the emergence of resistance, toxic side-effects, and strenuous administration has led to an ineffective remedy. Hence, vaccination remains an alternative and desirable approach for VL control. Though extensive research on anti-leishmanial vaccine candidates has been carried out in past decades, presence of an effective molecule is still missing. In the present study, we have evaluated the immunogenicity and prophylactic potential of a recombinant T-complex protein-1 gamma subunit of L. donovani (rLdTCP1γ), against VL in hamster model. The antigen exhibited in vitro stimulation of lymphoproliferative and NO response in miltefosine and amphotericin B treated hamsters depicting its immunotherapeutic/immunogenic nature. Immunization with rLdTCP1γ revealed a strong protective response against experimental VL as indicated by reduced parasite load in the spleen of immunized group compared to infected control. The immunized animals gained body weight and exhibited significant reduction in the spleen and liver weight as compared to infected controls on days 60, 90, 120 post-challenge. A substantial augmentation of cell-mediated immune response as depicted by an increased lymphocyte proliferation, nitric oxide production, DTH responses and increased levels of IgG2 was observed in rLdTCP1γ immunized hamsters. The Th1 stimulatory potential, imparted by the antigen, was found to be intensified in the presence of adjuvant Bacillus Calmette-Guérin (BCG). The efficacy was further assisted by an upregulated mRNA transcript of Th1 induced cytokines (IL-12, IFN-γ and TNFα) and downregulation of IL-4 and IL-10. The results are thus suggestive of rLdTCP1γ having the potential of a strong vaccine candidate against VL.


Assuntos
Antígenos de Protozoários/imunologia , Leishmania donovani/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/imunologia , Proteínas de Protozoários/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Linhagem Celular , Cricetinae , Citocinas/imunologia , Imunização/métodos , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Células Th1/imunologia , Vacinação/métodos
17.
Cell Stress Chaperones ; 27(3): 205-222, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35199315

RESUMO

T-complex polypeptide-1 (TCP1) is a group II chaperonin that folds various cellular proteins. About 10% of cytosolic proteins in yeast have been shown to flux through the TCP1 protein complex indicating that it interacts and folds a plethora of substrate proteins that perform essential functions. In Leishmania donovani, the gamma subunit of TCP1 (LdTCP1γ) has been shown to form a homo-oligomeric complex and exhibited ATP-dependent protein folding activity. LdTCP1γ is essential for the growth and infectivity of the parasite. The interacting partners of L. donovani TCP1γ, involved in many cellular processes, are far from being understood. In this study, we utilized co-immunoprecipitation assay coupled with liquid chromatography-mass spectrometry (LC-MS) to unravel protein-protein interaction (PPI) networks of LdTCP1γ in the L. donovani parasite. Label-free quantification (LFQ) proteomic analysis revealed 719 interacting partners of LdTCP1γ. String analysis showed that LdTCP1γ interacts with all subunits of TCP1 complex as well as other proteins belonging to pathways like metabolic process, ribosome, protein folding, sorting, and degradation. Trypanothione reductase, identified as one of the interacting partners, is refolded by LdTCP1γ. In addition, the differential expression of LdTCP1γ modulates the trypanothione reductase activity in L. donovani parasite. The study provides novel insight into the role of LdTCP1γ that will pave the way to better understand parasite biology by identifying the interacting partners of this chaperonin.


Assuntos
Leishmania donovani , Chaperonina com TCP-1/metabolismo , Leishmania donovani/metabolismo , Dobramento de Proteína , Proteômica , Ribossomos/metabolismo
18.
Life Sci ; 269: 119091, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33476629

RESUMO

Hematopoietic stem cells provide continuous supply of all the immune cells, through proliferation and differentiation decisions. These decisions are controlled by local bone marrow environment as well as by long-range signals for example endocrine system. Sex dependent differential immunological responses have been described under homeostasis and disease conditions. Females show higher longevity than male counterpart that seems to depend on major female sex hormone, estrogen. There are four estrogens - Estrone (E1), estradiol (E2), Estriol (E3) and Estetrol (E4) that spatially and temporarily present during different female reproductive phases. In this review, we discussed recent updates describing the effects of estrogen on HSC, immune cells and in bone biology. Estradiol (E2) being a major/abundant estrogen is extensively investigated, while effects of other estrogens E1, E3 and E4 are started to unravel recently. Furthermore, clinical effect of estrogen as hormone therapy is discussed in HSC and immune cells perspectives. The data presented in this review is compiled by searches of PubMed, database of American Cancer Society (ACS). We have included article from September 1994 to March 2020 as covering all article in chronological order is not fissile so we included relevant article with substantial information in this specific area of research by using the search term (alone or in combination) estrogen, hematopoietic stem cell, immune cells, gender difference, estrone, estriol, estetrol, therapeutic application, pregnancy, effect on bone.


Assuntos
Osso e Ossos/efeitos dos fármacos , Estrogênios/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Animais , Humanos
19.
J Proteomics ; 240: 104189, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33757882

RESUMO

Mitogen Activated Protein Kinase1 (MAPK1) of Leishmania donovani functions as key regulators of various cellular activities, which seem to be imperative for parasite survival, infectivity, drug resistance and post-translational modification of chaperones/co-chaperones. However, very less is known about LdMAPK1 target proteins. With recent advancements in proteomics, we aimed to identify phosphoproteins which were differentially expressed in LdMAPK1 overexpressing (Dd8++/++) and single replacement mutants (Dd8+/) as compared to wild type (Dd8+/+) parasites, utilizing LC-MS/MS approach. An in-depth label-free phospoproteomic analysis revealed that modulation of LdMAPK1 expression significantly modulates expression levels of miscellaneous phosphoproteins which may act as its targets/substrates. Out of 1974 quantified phosphoproteins in parasite, 140 were significantly differentially expressed in MAPK1 overexpressing and single replacement mutants. These differentially expressed phosphoproteins are majorly associated with metabolism, signal transduction, replication, transcription, translation, transporters and cytoskeleton/motor proteins, hence suggested that MAPK1 may act in concert to modulate global biological processes. The study further implicated possible role of LdMAPK1 in regulation and management of stress machinery in parasite through post translational modifications. Precisely, comparative phosphoproteomics study has elucidated significant role of LdMAPK1 in regulating various pathways contributing in parasite biology with relevance to future drug development. SIGNIFICANCE: MAPKinase1, the downstream kinase of MAPK signal transduction pathway, has drawn much attention as potential therapeutic drug target due to their indispensable role in survival and infectivity of Leishmania donovani. However, limited information is available about its downstream effector proteins/signaling networks. Utilizing label free LC-MS/MS analysis, phosphoproteome of LdMAPK1 over-expressing (Dd8++/++) and LdMAPK1 single replacement mutants (Dd8+/-) with wild type (Dd8+/+) parasites was compared and identified 140 LdMAPK1 modulated phosphoproteins, mainly involved in pathways like signal transduction, metabolism, transcriptional, translational, post-translational modification and regulation of heat shock proteins. Interestingly, LdMAPK1 interacts directly with only six phosphoproteins i.e. casein kinase, casein kinase II, HSP83/HSP90, LACK, protein kinase and serine/threonine protein kinase. Thus, the study elucidates significant role of LdMAPK1 in Leishmania biology which may drive drug-discovery efforts against visceral leishmaniasis.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Cromatografia Líquida , Humanos , Proteína Quinase 1 Ativada por Mitógeno , Fosfoproteínas/genética , Proteínas de Protozoários/genética , Espectrometria de Massas em Tandem
20.
J Biomol Struct Dyn ; 39(3): 960-969, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31984862

RESUMO

Trypanothione reductase of Leishmania donovani is a flavin adenine dinucleotide containing homodimeric protein essential for parasite survival. The flavoenzyme utilizes nicotinamide adenine dinucleotide phosphate in the reaction to convert oxidized trypanothione to reduced trypanothione which is further used up by tryparedoxin/tryparedoxin peroxidase system to neutralize the reactive oxygen species generated by the macrophages. Some of the drugs previously reported against the disease include sodium stibogluconate, miltefosine and amphotericin B. However, due to the resistance and toxicity problem associated with these molecules, there is an urgent need to develop new drugs against L. donovani. Trypanothione reductase of L. donovani is one such essential target whose inhibition could lead to a decline in parasite growth. In this work, we have performed a computational studies using Maybridge library of chemical compounds to identify potential inhibitors of Trypanothione reductase of L. donovani. Structure-based virtual screening method in combination with molecular docking was employed to identify and prioritize 30 compounds which were further subjected to molecular dynamics simulation. Ten compounds which showed stable ligand root-mean-square deviation plot, c-alpha backbone and root-mean-square fluctuation were considered for trypanothione reductase inhibition assay and subsequent inhibition studies of parasite growth. Enzyme inhibition assay resulted in shortlisting of four compounds that were found to inhibit Trypanothione reductase of L. donovani. Subsequently, the anti-leishmanial screening highlighted one compound as the potential anti-leishmanial agent, with IC50 value of 15.2 µM, that can be further optimised with medicinal chemistry efforts to improve its activity. Communicated by Ramaswamy H. Sarma.


Assuntos
Antiprotozoários , Leishmania donovani , Antiprotozoários/farmacologia , Simulação de Acoplamento Molecular , NADH NADPH Oxirredutases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA