Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 150(5): 948-60, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22939622

RESUMO

Heterochromatin serves important functions, protecting genome integrity and stabilizing gene expression programs. Although the Suv39h methyltransferases (KMTs) are known to ensure pericentric H3K9me3 methylation, the mechanisms that initiate and maintain mammalian heterochromatin organization remain elusive. We developed a biochemical assay and used in vivo analyses in mouse embryonic fibroblasts to identify Prdm3 and Prdm16 as redundant H3K9me1-specific KMTs that direct cytoplasmic H3K9me1 methylation. The H3K9me1 is converted in the nucleus to H3K9me3 by the Suv39h enzymes to reinforce heterochromatin. Simultaneous depletion of Prdm3 and Prdm16 abrogates H3K9me1 methylation, prevents Suv39h-dependent H3K9me3 trimethylation, and derepresses major satellite transcription. Most strikingly, DNA-FISH and electron microscopy reveal that combined impairment of Prdm3 and Prdm16 results in disintegration of heterochromatic foci and disruption of the nuclear lamina. Our data identify Prdm3 and Prdm16 as H3K9me1 methyltransferases and expose a functional framework in which anchoring to the nuclear periphery helps maintain the integrity of mammalian heterochromatin.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Heterocromatina , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Proteína do Locus do Complexo MDS1 e EVI1 , Camundongos , Lâmina Nuclear/metabolismo , Proto-Oncogenes , Fatores de Transcrição/genética
2.
Development ; 149(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35132438

RESUMO

Cranial neural crest cell (NCC)-derived chondrocyte precursors undergo a dynamic differentiation and maturation process to establish a scaffold for subsequent bone formation, alterations in which contribute to congenital birth defects. Here, we demonstrate that transcription factor and histone methyltransferase proteins Prdm3 and Prdm16 control the differentiation switch of cranial NCCs to craniofacial cartilage. Loss of either paralog results in hypoplastic and disorganized chondrocytes due to impaired cellular orientation and polarity. We show that these proteins regulate cartilage differentiation by controlling the timing of Wnt/ß-catenin activity in strikingly different ways: Prdm3 represses whereas Prdm16 activates global gene expression, although both act by regulating Wnt enhanceosome activity and chromatin accessibility. Finally, we show that manipulating Wnt/ß-catenin signaling pharmacologically or generating prdm3-/-;prdm16-/- double mutants rescues craniofacial cartilage defects. Our findings reveal upstream regulatory roles for Prdm3 and Prdm16 in cranial NCCs to control Wnt/ß-catenin transcriptional activity during chondrocyte differentiation to ensure proper development of the craniofacial skeleton.


Assuntos
Diferenciação Celular , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Via de Sinalização Wnt/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Cartilagem/citologia , Cartilagem/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteína do Locus do Complexo MDS1 e EVI1/deficiência , Proteína do Locus do Complexo MDS1 e EVI1/genética , Camundongos , Camundongos Knockout , Crista Neural/citologia , Crista Neural/metabolismo , Sequências Reguladoras de Ácido Nucleico , Crânio/citologia , Crânio/metabolismo , Proteínas Wnt/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , beta Catenina/metabolismo
3.
Blood ; 142(23): 2002-2015, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37738460

RESUMO

Acute myeloid leukemia (AML) with TP53 mutation is one of the most lethal cancers and portends an extremely poor prognosis. Based on in silico analyses of druggable genes and differential gene expression in TP53-mutated AML, we identified pololike kinase 4 (PLK4) as a novel therapeutic target and examined its expression, regulation, pathogenetic mechanisms, and therapeutic potential in TP53-mutated AML. PLK4 expression was suppressed by activated p53 signaling in TP53 wild-type AML and was increased in TP53-mutated AML cell lines and primary samples. Short-term PLK4 inhibition induced DNA damage and apoptosis in TP53 wild-type AML. Prolonged PLK4 inhibition suppressed the growth of TP53-mutated AML and was associated with DNA damage, apoptosis, senescence, polyploidy, and defective cytokinesis. A hitherto undescribed PLK4/PRMT5/EZH2/H3K27me3 axis was demonstrated in both TP53 wild-type and mutated AML, resulting in histone modification through PLK4-induced PRMT5 phosphorylation. In TP53-mutated AML, combined effects of histone modification and polyploidy activated the cGAS-STING pathway, leading to secretion of cytokines and chemokines and activation of macrophages and T cells upon coculture with AML cells. In vivo, PLK4 inhibition also induced cytokine and chemokine expression in mouse recipients, and its combination with anti-CD47 antibody, which inhibited the "don't-eat-me" signal in macrophages, synergistically reduced leukemic burden and prolonged animal survival. The study shed important light on the pathogenetic role of PLK4 and might lead to novel therapeutic strategies in TP53-mutated AML.


Assuntos
Histonas , Leucemia Mieloide Aguda , Animais , Camundongos , Histonas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Mutação , Metilação , Nucleotidiltransferases/metabolismo , Leucemia Mieloide Aguda/patologia , Imunidade , Poliploidia
4.
Haematologica ; 109(4): 1107-1120, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37731380

RESUMO

Acute myeloid leukemia (AML) is a hematologic malignancy that frequently relapses, even if remission can be achieved with intensive chemotherapy. One known relapse mechanism is the escape of leukemic cells from immune surveillance. Currently, there is no effective immunotherapy for AML because of the lack of specific antigens. Here, we aimed to elucidate the association between CD155 and CD112 in AML cell lines and primary AML samples and determine the therapeutic response. Briefly, we generated NK-92 cell lines (NK-92) with modified DNAX-associated molecule 1 (DNAM-1) and T-cell immunoglobulin and ITIM domain (TIGIT), which are receptors of CD155 and CD112, respectively. Analysis of 200 cases of AML indicated that the survival of patients with high expression of CD112 was shorter than that of patients with low expression. NK-92 DNAM-1 exhibited enhanced cytotoxic activity against AML cell lines and primary cells derived from patients with AML. DNAM-1 induction in NK-92 cells enhanced the expression of cytotoxicity-related genes, thus overcoming the inhibitory activity of TIGIT. Between CD155 and CD112, CD112 is an especially important target for natural killer (NK)-cell therapy of AML. Using a xenograft model, we confirmed the enhanced antitumor effect of NK-92 DNAM-1 compared with that of NK-92 alone. We also discovered that CD112 (Nectin-2), an immune checkpoint molecule belonging to the Nectin/Nectin-like family, functions as a novel target of immunotherapy. In conclusion, modification of the DNAM-1/CD112 axis in NK cells may be an effective novel immunotherapy for AML. Furthermore, our findings suggest that the levels of expression of these molecules are potential prognostic markers in AML.


Assuntos
Proteínas de Checkpoint Imunológico , Leucemia Mieloide Aguda , Humanos , Nectinas , Proteínas de Checkpoint Imunológico/metabolismo , Células Matadoras Naturais , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Receptores Imunológicos , Terapia Baseada em Transplante de Células e Tecidos , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo
5.
Cancer Sci ; 114(10): 4032-4040, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37522388

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is one of the most frequently occurring cancers in children and is associated with a poor prognosis. Here, we performed large-scale screening of natural compound libraries to identify potential drugs against T-ALL. We identified three low-molecular-weight compounds (auxarconjugatin-B, rumbrin, and lavendamycin) that inhibited the proliferation of the T-ALL cell line CCRF-CEM, but not that of the B lymphoma cell line Raji in a low concentration range. Among them, auxarconjugatin-B and rumbrin commonly contained a polyenyl 3-chloropyrrol in their chemical structure, therefore we chose auxarconjugatin-B for further analyses. Auxarconjugatin-B suppressed the in vitro growth of five human T-ALL cell lines and two T-ALL patient-derived cells, but not that of adult T-cell leukemia patient-derived cells. Cultured normal T cells were several-fold resistant to auxarconjugatin-B. Auxarconjugatin-B and its synthetic analogue Ra#37 depolarized the mitochondrial membrane potential of CCRF-CEM cells within 3 h of treatment. These compounds are promising seeds for developing novel anti-T-ALL drugs.

6.
Cell Mol Life Sci ; 79(9): 473, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941268

RESUMO

Hematopoietic stem cells (HSCs) undergo progressive functional decline over time due to both internal and external stressors, leading to aging of the hematopoietic system. A comprehensive understanding of the molecular mechanisms underlying HSC aging will be valuable in developing novel therapies for HSC rejuvenation and to prevent the onset of several age-associated diseases and hematological malignancies. This review considers the general causes of HSC aging that range from cell-intrinsic factors to cell-extrinsic factors. In particular, epigenetics and inflammation have been implicated in the linkage of HSC aging, clonality, and oncogenesis. The challenges in clarifying mechanisms of HSC aging have accelerated the development of therapeutic interventions to rejuvenate HSCs, the major goal of aging research; these details are also discussed in this review.


Assuntos
Senescência Celular , Células-Tronco Hematopoéticas , Epigênese Genética , Hematopoese , Células-Tronco Hematopoéticas/fisiologia
7.
Cancer Sci ; 113(4): 1182-1194, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35133065

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is an age-associated phenomenon characterized by clonal expansion of blood cells harboring somatic mutations in hematopoietic genes, including DNMT3A, TET2, and ASXL1. Clinical evidence suggests that CHIP is highly prevalent and associated with poor prognosis in solid-tumor patients. However, whether blood cells with CHIP mutations play a causal role in promoting the development of solid tumors remained unclear. Using conditional knock-in mice that express CHIP-associated mutant Asxl1 (Asxl1-MT), we showed that expression of Asxl1-MT in T cells, but not in myeloid cells, promoted solid-tumor progression in syngeneic transplantation models. We also demonstrated that Asxl1-MT-expressing blood cells accelerated the development of spontaneous mammary tumors induced by MMTV-PyMT. Intratumor analysis of the mammary tumors revealed the reduced T-cell infiltration at tumor sites and programmed death receptor-1 (PD-1) upregulation in CD8+ T cells in MMTV-PyMT/Asxl1-MT mice. In addition, we found that Asxl1-MT induced T-cell dysregulation, including aberrant intrathymic T-cell development, decreased CD4/CD8 ratio, and naïve-memory imbalance in peripheral T cells. These results indicate that Asxl1-MT perturbs T-cell development and function, which contributes to creating a protumor microenvironment for solid tumors. Thus, our findings raise the possibility that ASXL1-mutated blood cells exacerbate solid-tumor progression in ASXL1-CHIP carriers.


Assuntos
Hematopoiese Clonal , Neoplasias , Proteínas Repressoras , Animais , Linfócitos T CD8-Positivos/metabolismo , Hematopoiese Clonal/genética , Hematopoese/genética , Camundongos , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Microambiente Tumoral
8.
Blood ; 136(14): 1670-1684, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492700

RESUMO

Additional sex combs-like 1 (ASXL1), an epigenetic modulator, is frequently mutated in myeloid neoplasms. Recent analyses of mutant ASXL1 conditional knockin (ASXL1-MT-KI) mice suggested that ASXL1-MT alone is insufficient for myeloid transformation. In our previous study, we used retrovirus-mediated insertional mutagenesis, which exhibited the susceptibility of ASXL1-MT-KI hematopoietic cells to transform into myeloid leukemia cells. In this screening, we identified the hematopoietically expressed homeobox (HHEX) gene as one of the common retrovirus integration sites. In this study, we investigated the potential cooperation between ASXL1-MT and HHEX in myeloid leukemogenesis. Expression of HHEX enhanced proliferation of ASXL1-MT-expressing HSPCs by inhibiting apoptosis and blocking differentiation, whereas it showed only modest effect in normal HSPCs. Moreover, ASXL1-MT and HHEX accelerated the development of RUNX1-ETO9a and FLT3-ITD leukemia. Conversely, HHEX depletion profoundly attenuated the colony-forming activity and leukemogenicity of ASXL1-MT-expressing leukemia cells. Mechanistically, we identified MYB and ETV5 as downstream targets for ASXL1-MT and HHEX by using transcriptome and chromatin immunoprecipitation-next-generation sequencing analyses. Moreover, we found that expression of ASXL1-MT enhanced the binding of HHEX to the promoter loci of MYB or ETV5 via reducing H2AK119ub. Depletion of MYB or ETV5 induced apoptosis or differentiation in ASXL1-MT-expressing leukemia cells, respectively. In addition, ectopic expression of MYB or ETV5 reversed the reduced colony-forming activity of HHEX-depleted ASXL1-MT-expressing leukemia cells. These findings indicate that the HHEX-MYB/ETV5 axis promotes myeloid transformation in ASXL1-mutated preleukemia cells.


Assuntos
Transformação Celular Neoplásica/genética , Predisposição Genética para Doença , Proteínas de Homeodomínio/genética , Mutação , Células Mieloides/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Apoptose/genética , Biomarcadores Tumorais , Biópsia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Ensaio de Unidades Formadoras de Colônias , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Estudos de Associação Genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Imunofenotipagem , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/mortalidade , Leucemia Mieloide/patologia , Camundongos , Células Mieloides/patologia , Prognóstico , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
9.
Dev Biol ; 461(2): 132-144, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32044379

RESUMO

The formation of the craniofacial skeleton is a highly dynamic process that requires proper orchestration of various cellular processes in cranial neural crest cell (cNCC) development, including cell migration, proliferation, differentiation, polarity and cell death. Alterations that occur during cNCC development result in congenital birth defects and craniofacial abnormalities such as cleft lip with or without cleft palate. While the gene regulatory networks facilitating neural crest development have been extensively studied, the epigenetic mechanisms by which these pathways are activated or repressed in a temporal and spatially regulated manner remain largely unknown. Chromatin modifiers can precisely modify gene expression through a variety of mechanisms including histone modifications such as methylation. Here, we investigated the role of two members of the PRDM (Positive regulatory domain) histone methyltransferase family, Prdm3 and Prdm16 in craniofacial development using genetic models in zebrafish and mice. Loss of prdm3 or prdm16 in zebrafish causes craniofacial defects including hypoplasia of the craniofacial cartilage elements, undefined posterior ceratobranchials, and decreased mineralization of the parasphenoid. In mice, while conditional loss of Prdm3 in the early embryo proper causes mid-gestation lethality, loss of Prdm16 caused craniofacial defects including anterior mandibular hypoplasia, clefting in the secondary palate and severe middle ear defects. In zebrafish, prdm3 and prdm16 compensate for each other as well as a third Prdm family member, prdm1a. Combinatorial loss of prdm1a, prdm3, and prdm16 alleles results in severe hypoplasia of the anterior cartilage elements, abnormal formation of the jaw joint, complete loss of the posterior ceratobranchials, and clefting of the ethmoid plate. We further determined that loss of prdm3 and prdm16 reduces methylation of histone 3 lysine 9 (repression) and histone 3 lysine 4 (activation) in zebrafish. In mice, loss of Prdm16 significantly decreased histone 3 lysine 9 methylation in the palatal shelves but surprisingly did not change histone 3 lysine 4 methylation. Taken together, Prdm3 and Prdm16 play an important role in craniofacial development by maintaining temporal and spatial regulation of gene regulatory networks necessary for proper cNCC development and these functions are both conserved and divergent across vertebrates.


Assuntos
Anormalidades Craniofaciais/genética , Proteínas de Ligação a DNA/fisiologia , Histona Metiltransferases/fisiologia , Proteína do Locus do Complexo MDS1 e EVI1/fisiologia , Crânio/embriologia , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Cromatina/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Orelha Média/anormalidades , Orelha Média/embriologia , Ossos Faciais/embriologia , Feminino , Genes Letais , Código das Histonas/genética , Histona Metiltransferases/deficiência , Histona Metiltransferases/genética , Histonas/metabolismo , Arcada Osseodentária/embriologia , Proteína do Locus do Complexo MDS1 e EVI1/deficiência , Proteína do Locus do Complexo MDS1 e EVI1/genética , Masculino , Metilação , Camundongos Endogâmicos C57BL , Processamento de Proteína Pós-Traducional/genética , Especificidade da Espécie , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
10.
Cell Mol Life Sci ; 76(13): 2511-2523, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30927018

RESUMO

Recent high-throughput genome-wide sequencing studies have identified recurrent somatic mutations in myeloid neoplasms. An epigenetic regulator, Additional sex combs-like 1 (ASXL1), is one of the most frequently mutated genes in all subtypes of myeloid malignancies. ASXL1 mutations are also frequently detected in clonal hematopoiesis, which is associated with an increased risk of mortality. Therefore, it is important to understand how ASXL1 mutations contribute to clonal expansion and myeloid transformation in hematopoietic cells. Studies using ASXL1-depleted human hematopoietic cells and Asxl1 knockout mice have shown that deletion of wild-type ASXL1 protein leads to impaired hematopoiesis and accelerates myeloid malignancies via loss of interaction with polycomb repressive complex 2 proteins. On the other hand, ASXL1 mutations in myeloid neoplasms typically occur near the last exon and result in the expression of C-terminally truncated mutant ASXL1 protein. Biological studies and biochemical analyses of this variant have shed light on its dominant-negative and gain-of-function features in myeloid transformation via a variety of epigenetic changes. Based on these results, it would be possible to establish novel promising therapeutic strategies for myeloid malignancies harboring ASXL1 mutations by blocking interactions between ASXL1 and associating epigenetic regulators. Here, we summarize the clinical implications of ASXL1 mutations, the role of wild-type ASXL1 in normal hematopoiesis, and oncogenic functions of mutant ASXL1 in myeloid neoplasms.


Assuntos
Hematopoese , Mutação , Síndromes Mielodisplásicas/fisiopatologia , Proteínas Repressoras/metabolismo , Animais , Humanos , Síndromes Mielodisplásicas/metabolismo , Proteínas Repressoras/genética
11.
Rinsho Ketsueki ; 61(9): 1130-1137, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-33162508

RESUMO

Evidence of human leukemia stem cells (LSCs) in acute myeloid leukemia (AML) was first reported nearly a quarter century ago through the identification of rare engrafting cell subpopulations in patient-derived xenograft assays. Since then, studies have revealed diverse characteristics of AML stem cells. Initiating mutations convert normal hematopoietic stem cells (HSCs) to pre-leukemic HSCs. The repopulation advantage of pre-leukemic HSCs over normal HSCs leads to clonal evolution. Acquisition of additional mutations in pre-leukemic HSCs results in the development of AML composed of genetically distinct subclones. Each subclone contains LSCs with unique characteristics, and these LSCs contribute to therapeutic resistance and relapse. Interestingly, some LSCs can escape from antitumor immune responses, thereby survive the treatment. This article summarizes recent advances in the field of LSC biology from genomic and immunological perspectives.


Assuntos
Leucemia Mieloide Aguda , Evolução Clonal , Genômica , Células-Tronco Hematopoéticas , Humanos , Leucemia Mieloide Aguda/genética , Células-Tronco Neoplásicas
12.
Rinsho Ketsueki ; 61(4): 336-342, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32378578

RESUMO

For more than two decades, the leukemia stem cell (LSC) model has received considerable attention following the identification of rare engrafting cell subpopulations in patient-derived xenograft assays. LSCs are thought to induce leukemogenesis and recurrence and are considered excellent targets in the development of curative therapies. Experimental support for this model in human malignancy was first achieved for acute myeloid leukemia (AML). Subsequent studies of AML stem cells have revealed a dormant state and enrichment of the CD34+CD38- subpopulation. These cells express specific antigens (e.g., CD123, CD47, TIM-3) and depend on several signaling pathways (e.g., WNT/ß-catenin and PI3K/AKT/FOXO pathways) and mitochondrial respiration for growth and survival. More recently, genetic and immunological studies revealed that LSCs are genetically heterogenous and can escape host antitumor immunity. This article summarizes the current knowledge about LSCs and discusses future challenges involving the translation of research findings into real-time benefits for AML patients.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Antígenos CD34 , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Fosfatidilinositol 3-Quinases , Transdução de Sinais
14.
J Biol Chem ; 292(30): 12528-12541, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28536267

RESUMO

RUNX1 is a member of RUNX transcription factors and plays important roles in hematopoiesis. Disruption of RUNX1 activity has been implicated in the development of hematopoietic neoplasms. Chromosomal translocations involving the RUNX1 gene are associated with several types of leukemia, including acute myeloid leukemia driven by a leukemogenic fusion protein RUNX1-RUNX1T1. Previous studies have shown that RUNX1 is an unstable protein and is subjected to proteolytic degradation mediated by the ubiquitin-proteasome pathway. However, the precise mechanisms of RUNX1 ubiquitination have not been fully understood. Furthermore, much less is known about the mechanisms to regulate the stability of RUNX1-RUNX1T1. In this study, we identified several RUNX1-interacting E3 ubiquitin ligases using a novel high-throughput binding assay. Among them, we found that STUB1 bound to RUNX1 and induced its ubiquitination and degradation mainly in the nucleus. Immunofluorescence analyses revealed that the STUB1-induced ubiquitination also promoted nuclear export of RUNX1, which probably contributes to the reduced transcriptional activity of RUNX1 in STUB1-overexpressing cells. STUB1 also induced ubiquitination of RUNX1-RUNX1T1 and down-regulated its expression. Importantly, STUB1 overexpression showed a substantial growth-inhibitory effect in myeloid leukemia cells that harbor RUNX1-RUNX1T1, whereas it showed only a marginal effect in other non-RUNX1-RUNX1T1 leukemia cells and normal human cord blood cells. Taken together, these data suggest that the E3 ubiquitin ligase STUB1 is a negative regulator of both RUNX1 and RUNX1-RUNX1T1. Activation of STUB1 could be a promising therapeutic strategy for RUNX1-RUNX1T1 leukemia.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Estabilidade Proteica , Proteína 1 Parceira de Translocação de RUNX1
15.
Biochem Biophys Res Commun ; 495(3): 2310-2316, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29278703

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is a malignant cancer with poor prognosis. The transcriptional co-factor LIM domain only 2 (LMO2) and its target gene HHEX are essential for self-renewal of T cell precursors and T-ALL etiology. LMO2 directly associates with LDB1 in a large DNA-containing nuclear complex and controls the transcription of T-ALL-related genes. Recently, we reported that overexpression of the LIM-homeodomain transcription factor, Lhx2, results in liberation of the Lmo2 protein from the Lmo2-Ldb1 complex, followed by ubiquitin proteasome mediated degradation. Here, we found that proliferation of five human T-ALL-derived cell lines, including CCRF-CEM, was significantly suppressed by retroviral overexpression of Lhx2. The majority of Lhx2-transduced CCRF-CEM cells arrested in G0 phase and subsequently underwent apoptosis. Expression of LMO2 protein as well as HHEX, ERG, HES1 and MYC genes was repressed in CCRF-CEM cells by transduction with Lhx2. Lhx2-mediated growth inhibition was partially rescued by simultaneous overexpression of Lmo2; however, both the C-terminal LIM domain and the homeodomain of Lhx2 were required for its growth-suppressive activity. These data indicate that Lhx2 is capable of blocking proliferation of T-ALL-derived cells by both LMO2-dependent and -independent means. We propose Lhx2 as a new molecular tool for anti-T-ALL drug development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células , Proteínas com Domínio LIM/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Regulação para Cima
16.
Biochem Biophys Res Commun ; 505(3): 905-909, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30309654

RESUMO

RUNX1 is a member of RUNX transcription factors and plays important roles in hematopoiesis. RUNX1 function is under the tight control through posttranslational modifications, including phosphorylation and ubiquitination. We previously developed a luminescence-based binding assay (AlphaScreen) to systematically detect RUNX1-interacting E3 ubiquitin ligases. In this study, we showed that a nuclear ubiquitin ligase RNF38 induced ubiquitination of RUNX1. RNF38-induced RUNX1 ubiquitination did not promote RUNX1 degradation, but rather stabilized RUNX1 protein. We also found that RNF38 enhanced RUNX1-mediated transcriptional repression of the erythroid master regulator KLF1 in K562 cells. Consequently, RNF38 cooperated with RUNX1 to inhibit erythroid differentiation of K562 cells. Thus, our study identified RNF38 as a novel E3 ligase that modifies RUNX1 function without inducing its degradation.


Assuntos
Proteínas de Transporte/farmacologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Ubiquitinação/efeitos dos fármacos , Diferenciação Celular , Subunidade alfa 2 de Fator de Ligação ao Core/efeitos dos fármacos , Células Eritroides/citologia , Células Eritroides/efeitos dos fármacos , Humanos , Células K562 , Fatores de Transcrição Kruppel-Like , Estabilidade Proteica/efeitos dos fármacos , Ubiquitina-Proteína Ligases/farmacologia
17.
Cancer Sci ; 108(4): 553-562, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28100030

RESUMO

Epigenetic regulation in hematopoiesis has been a field of rapid expansion. Genome-wide analyses have revealed, and will continue to identify genetic alterations in epigenetic genes that are present in various types of hematopoietic neoplasms. Development of new mouse models for individual epigenetic modifiers has revealed their novel, sometimes unexpected, functions. In this review, we provide an overview of genetic alterations within epigenetic genes in various types of hematopoietic neoplasms. We then summarize the physiologic roles of these epigenetic modifiers during hematopoiesis, and describe therapeutic approaches targeting the epigenetic modifications. Interestingly, the mutational spectrum of epigenetic genes indicates that myeloid neoplasms are similar to T-cell neoplasms, whereas B-cell lymphomas have distinct features. Furthermore, it appears that the epigenetic mutations related to active transcription are more associated with myeloid/T-cell neoplasms, whereas those that repress transcription are associated with B-cell lymphomas. These observations may imply that the global low-level or high-level transcriptional activity underlies the development of myeloid/T-cell tumors or B-cell tumors, respectively.


Assuntos
Epigênese Genética , Neoplasias Hematológicas/genética , Hematopoese/genética , Mutação , Animais , Metilação de DNA , Estudo de Associação Genômica Ampla/métodos , Neoplasias Hematológicas/terapia , Humanos , Camundongos , Terapia de Alvo Molecular/métodos
18.
Blood ; 125(17): 2630-40, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25762176

RESUMO

The model systems available for studying human hematopoiesis, malignant hematopoiesis, and hematopoietic stem cell (HSC) function in vivo have improved dramatically over the last decade, primarily due to improvements in xenograft mouse strains. Several recent reviews have focused on the historic development of immunodeficient mice over the last 2 decades, as well as their use in understanding human HSC and leukemia stem cell (LSC) biology and function in the context of a humanized mouse. However, in the intervening time since these reviews, a number of new mouse models, technical approaches, and scientific advances have been made. In this review, we update the reader on the newest and best models and approaches available for studying human malignant and normal HSCs in immunodeficient mice, including newly developed mice for use in chemotherapy testing and improved techniques for humanizing mice without laborious purification of HSC. We also review some relevant scientific findings from xenograft studies and highlight the continued limitations that confront researchers working with human HSC and LSC in vivo.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/patologia , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/patologia , Animais , Modelos Animais de Doenças , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia/metabolismo , Leucemia/patologia , Camundongos , Transplante de Neoplasias/métodos , Células-Tronco Neoplásicas/metabolismo , Transplante Heterólogo/métodos
19.
Adv Exp Med Biol ; 962: 151-173, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28299657

RESUMO

AML1-ETO leukemia is the most common cytogenetic subtype of acute myeloid leukemia, defined by the presence of t(8;21). Remarkable progress has been achieved in understanding the molecular pathogenesis of AML1-ETO leukemia. Proteomic surveies have shown that AML-ETO forms a stable complex with several transcription factors, including E proteins. Genome-wide transcriptome and ChIP-seq analyses have revealed the genes directly regulated by AML1-ETO, such as CEBPA. Several lines of evidence suggest that AML1-ETO suppresses endogenous DNA repair in cells to promote mutagenesis, which facilitates acquisition of cooperating secondary events. Furthermore, it has become increasingly apparent that a delicate balance of AML1-ETO and native AML1 is important to sustain the malignant cell phenotype. Translation of these findings into the clinical setting is just beginning.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Animais , Reparo do DNA/genética , Reparo do DNA/fisiologia , Humanos , Mutagênese/genética , Mutagênese/fisiologia , Proteômica/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Transcriptoma/fisiologia
20.
Rinsho Ketsueki ; 57(2): 118-28, 2016 Feb.
Artigo em Japonês | MEDLINE | ID: mdl-26935629

RESUMO

Acute myeloid leukemia (AML) is a form of blood cancer that is characterized by the rapid growth of abnormal myeloid cells. Although the general therapeutic strategy in patients with AML has not changed substantially in more than 30 years, remarkable progress has been achieved in understanding the pathogenesis of AML. Genome-wide analyses have revealed genetic mutations and epigenetic dysregulations that are present in AML cells. Studies of leukemia stem cells have clarified their complex properties and functions in the development of AML, and have also led to the recent identification of pre-leukemic hematopoietic stem cells that undergo clonal evolution in healthy people. Translation of these new findings into the clinical setting is just beginning. This article focuses on recent advances in basic research on the molecular pathogenesis of AML. New strategies under investigation, including epigenetic therapies and immunotherapies, to provide better therapeutic options for AML patients, are also summarized.


Assuntos
Evolução Clonal/genética , Regulação Leucêmica da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Leucemia Mieloide Aguda/genética , Doença Aguda , Animais , Evolução Clonal/fisiologia , Humanos , Leucemia Mieloide Aguda/diagnóstico , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA