Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 63(1): 110-24, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27345152

RESUMO

The Lupus autoantigen La is an RNA-binding protein that stabilizes RNA polymerase III (Pol III) transcripts and supports RNA folding and has in addition been implicated in the mammalian microRNA (miRNA) pathway. Here, we have analyzed effects of La depletion on Argonaute (Ago)-bound small RNAs in human cells. We find that in the absence of La, distinct tRNA fragments are loaded into Ago proteins. Thus, La functions as gatekeeper ensuring correct tRNA maturation and protecting the miRNA pathway from potentially functional tRNA fragments. However, one specific isoleucin pre-tRNA produces both a functional tRNA and a miRNA even when La is present. We demonstrate that the fully complementary 5' leader and 3' trailer of the pre-tRNA-Ile form a double-stranded RNA molecule that has low affinity to La. Instead, Exportin-5 (Xpo5) recognizes it as miRNA precursor and transports it into the cytoplasm for Dicer processing and Ago loading.


Assuntos
Autoantígenos/metabolismo , MicroRNAs/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência de Isoleucina/metabolismo , Ribonucleoproteínas/metabolismo , Células A549 , Proteínas Argonautas/metabolismo , Autoantígenos/genética , Sítios de Ligação , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Carioferinas/metabolismo , Células MCF-7 , MicroRNAs/genética , Conformação de Ácido Nucleico , Ligação Proteica , Interferência de RNA , RNA Polimerase III/metabolismo , Precursores de RNA/química , Precursores de RNA/genética , RNA de Transferência de Isoleucina/química , RNA de Transferência de Isoleucina/genética , RNA Viral/genética , RNA Viral/metabolismo , Ribonuclease III/metabolismo , Ribonucleoproteínas/genética , Relação Estrutura-Atividade , Transfecção , Antígeno SS-B
2.
Eur J Immunol ; 51(9): 2348-2350, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34019695

RESUMO

The strongest genetic and environmental risk factors for MS, an inflammatory CNS disease, are HLA-DRB1*15:01 and EBV. This work shows that HLA-DRB1*15:01 acts as a co-receptor for EBV infection of a B cell line, suggesting a mechanistic link between both risk factors for MS.


Assuntos
Cadeias HLA-DRB1/metabolismo , Herpesvirus Humano 4/metabolismo , Esclerose Múltipla/virologia , Receptores Virais/metabolismo , Linfócitos B/virologia , Linhagem Celular , Infecções por Vírus Epstein-Barr/patologia , Humanos , Esclerose Múltipla/etiologia , Fatores de Risco
3.
Nucleic Acids Res ; 47(7): 3353-3364, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30820533

RESUMO

While the number of human miRNA candidates continuously increases, only a few of them are completely characterized and experimentally validated. Toward determining the total number of true miRNAs, we employed a combined in silico high- and experimental low-throughput validation strategy. We collected 28 866 human small RNA sequencing data sets containing 363.7 billion sequencing reads and excluded falsely annotated and low quality data. Our high-throughput analysis identified 65% of 24 127 mature miRNA candidates as likely false-positives. Using northern blotting, we experimentally validated miRBase entries and novel miRNA candidates. By exogenous overexpression of 108 precursors that encode 205 mature miRNAs, we confirmed 68.5% of the miRBase entries with the confirmation rate going up to 94.4% for the high-confidence entries and 18.3% of the novel miRNA candidates. Analyzing endogenous miRNAs, we verified the expression of 8 miRNAs in 12 different human cell lines. In total, we extrapolated 2300 true human mature miRNAs, 1115 of which are currently annotated in miRBase V22. The experimentally validated miRNAs will contribute to revising targetomes hypothesized by utilizing falsely annotated miRNAs.


Assuntos
Simulação por Computador , MicroRNAs/análise , MicroRNAs/genética , Análise de Sequência de RNA , Northern Blotting , Linhagem Celular , Conjuntos de Dados como Assunto , Reações Falso-Positivas , Humanos , MicroRNAs/isolamento & purificação , Anotação de Sequência Molecular , Precursores de RNA/análise , Precursores de RNA/genética , Reprodutibilidade dos Testes
4.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429351

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is an aggressive lymphoid tumor which is occasionally Epstein-Barr virus (EBV) positive and is further subtyped as activated B-cell DLBCL (ABC-DLBCL) and germinal center B-cell DLBCL (GCB-DLBCL), which has implications for prognosis and treatment. We performed Ago2 RNA immunoprecipitation followed by high-throughput RNA sequencing (Ago2-RIP-seq) to capture functionally active microRNAs (miRNAs) in EBV-negative ABC-DLBCL and GCB-DLBCL cell lines and their EBV-infected counterparts. In parallel, total miRNA profiles of these cells were determined to capture the cellular miRNA profile for comparison with the functionally active profile. Selected miRNAs with differential abundances were validated using real-time quantitative PCR (RT-qPCR) and Northern blotting. We found 6 miRNAs with differential abundances (2 upregulated and 4 downregulated miRNAs) between EBV-negative and -positive ABC-DLBCL cells and 12 miRNAs with differential abundances (3 upregulated and 9 downregulated miRNAs) between EBV-negative and -positive GCB-DLBCL cells. Eight and twelve miRNAs were confirmed using RT-qPCR in ABC-DLBCL and GCB-DLBCL cells, respectively. Selected miRNAs were analyzed in additional type I/II versus type III EBV latency DLBCL cell lines. Furthermore, upregulation of miR-221-3p and downregulation of let7c-5p in ABC-DLBCL cells and upregulation of miR-363-3p and downregulation of miR-423-5p in GCB-DLBCL cells were verified using RIP-Northern blotting. Our comprehensive sequence analysis of the DLBCL miRNA profiles identified sets of deregulated miRNAs by Ago2-RIP-seq. Our Ago2-IP-seq miRNA profile could be considered an important data set for the detection of deregulated functionally active miRNAs in DLBCLs and could possibly lead to the identification of miRNAs as biomarkers for the classification of DLBCLs or even as targets for personalized targeted treatment.IMPORTANCE Diffuse large B-cell lymphoma (DLBCL) is a highly aggressive tumor of lymphoid origin which is occasionally Epstein-Barr virus (EBV) positive. MicroRNAs are found in most multicellular organisms and even in viruses such as EBV. They regulate the synthesis of proteins by binding to their cognate mRNA. MicroRNAs are tethered to their target mRNAs by "Argonaute" proteins. Here we compared the overall miRNA content of the Ago2 complex by differential loading to the overall content of miRNAs in two DLBCL cell lines and their EBV-converted counterparts. In all cell lines, the Ago2 load was different from the overall expression of miRNAs. In addition, the loading of the Ago2 complex was changed upon infection with EBV. This indicates that the virus not only changes the overall content of miRNAs but also influences the expression of proteins by affecting the Ago complexes.


Assuntos
Proteínas Argonautas/metabolismo , Infecções por Vírus Epstein-Barr/genética , Regulação Neoplásica da Expressão Gênica , Herpesvirus Humano 4/isolamento & purificação , Linfoma Difuso de Grandes Células B/genética , MicroRNAs/genética , Proteínas Argonautas/genética , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/virologia , Células Tumorais Cultivadas
5.
J Gen Virol ; 98(8): 2128-2142, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28758620

RESUMO

The Epstein-Barr virus is a human herpes virus with oncogenic potential. The virus-encoded nuclear antigen 2 (EBNA2) is a key mediator of viral tumorigenesis. EBNA2 features an arginine-glycine (RG) repeat at amino acids (aa)339-354 that is essential for the transformation of lymphocytes and contains symmetrically (SDMA) and asymmetrically (ADMA) di-methylated arginine residues. The SDMA-modified EBNA2 binds the survival motor neuron protein (SMN), thus mimicking SMD3, a cellular SDMA-containing protein that interacts with SMN. Accordingly, a monoclonal antibody (mAb) specific for the SDMA-modified RG repeat of EBNA2 also binds to SMD3. With the novel mAb 19D4 we now show that EBNA2 contains mono-methylated arginine (MMA) residues within the RG repeat. Using 19D4, we immune-precipitated and analysed by mass spectrometry cellular proteins in EBV-transformed B-cells that feature MMA motifs that are similar to the one in EBNA2. Among the cellular proteins identified, we confirmed by immunoprecipitation and/or Western blot analyses Aly/REF, Coilin, DDX5, FXR1, HNRNPK, LSM4, MRE11, NRIP, nucleolin, PRPF8, RBM26, SMD1 (SNRDP1) and THRAP3 proteins that are either known to contain MMA residues or feature RG repeat sequences that probably serve as methylation substrates. The identified proteins are involved in splicing, tumorigenesis, transcriptional activation, DNA stability and RNA processing or export. Furthermore, we found that several proteins involved in energy metabolism are associated with MMA-modified proteins. Interestingly, the viral EBNA1 protein that features methylated RG repeat motifs also reacted with the antibodies. Our results indicate that the region between aa 34-52 of EBNA1 contains ADMA or SDMA residues, while the region between aa 328-377 mainly contains MMA residues.


Assuntos
Transformação Celular Viral , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/patogenicidade , Interações Hospedeiro-Patógeno , Proteínas Virais/metabolismo , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Western Blotting , Reações Cruzadas , Humanos , Imunoprecipitação , Espectrometria de Massas
6.
Acta Neuropathol ; 130(4): 557-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26290407

RESUMO

As a result of an error during digital processing of Figure 1a for publication, one of the immunofluorescence panels (GA175-GFP Nucleolin staining) was accidentally strongly altered in contrast and brightness. The corrected version of the figure is shown below. The authors apologize for any confusion caused by this error. In the published article, the collaborators from the two institutions, German Consortium for Frontotemporal Lobar Degeneration and Bavarian Brain Banking Alliance, were incorrectly listed in article note. These names have been relocated to the Appendix section in the article now.Figure 1a and the collaborators list have been amended in the published article.

7.
Acta Neuropathol ; 130(4): 537-55, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26085200

RESUMO

A massive expansion of a GGGGCC repeat upstream of the C9orf72 coding region is the most common known cause of amyotrophic lateral sclerosis and frontotemporal dementia. Despite its intronic localization and lack of a canonical start codon, both strands are translated into aggregating dipeptide repeat (DPR) proteins: poly-GA, poly-GP, poly-GR, poly-PR and poly-PA. To address conflicting findings on the predominant toxicity of the different DPR species in model systems, we compared the expression pattern of the DPR proteins in rat primary neurons and postmortem brain and spinal cord of C9orf72 mutation patients. Only poly-GA overexpression closely mimicked the p62-positive neuronal cytoplasmic inclusions commonly observed for all DPR proteins in patients. In contrast, overexpressed poly-GR and poly-PR formed nucleolar p62-negative inclusions. In patients, most of the less common neuronal intranuclear DPR inclusions were para-nucleolar and p62 positive. Neuronal nucleoli in C9orf72 cases showed normal size and morphology regardless of the presence of poly-GR and poly-PR inclusions arguing against widespread nucleolar stress, reported in cellular models. Colocalization of para-nucleolar DPR inclusions with heterochromatin and a marker of transcriptional repression (H3K9me2) indicates a link to gene transcription. In contrast, we detected numerous intranuclear DPR inclusions not associated with nucleolar structures in ependymal and subependymal cells. In patients, neuronal inclusions of poly-GR, poly-GP and the poly-GA interacting protein Unc119 were less abundant than poly-GA inclusions, but showed similar regional and subcellular distribution. Regardless of neurodegeneration, all inclusions were most abundant in neocortex, hippocampus and thalamus, with few inclusions in brain stem and spinal cord. In the granular cell layer of the cerebellum, poly-GA and Unc119 inclusions were significantly more abundant in cases with FTLD than in cases with MND and FTLD/MND. Poly-PR inclusions were rare throughout the brain but significantly more abundant in the CA3/4 region of FTLD cases than in MND cases. Thus, although DPR distribution is not correlated with neurodegeneration spatially, it correlates with neuropathological subtypes.


Assuntos
Expansão das Repetições de DNA , Inativação Gênica , Proteínas/genética , Proteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteína C9orf72 , Nucléolo Celular/metabolismo , Nucléolo Celular/patologia , Estudos de Coortes , Degeneração Lobar Frontotemporal/complicações , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Pessoa de Meia-Idade , Doença dos Neurônios Motores/complicações , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Ratos , Medula Espinal/metabolismo , Medula Espinal/patologia
8.
Acta Neuropathol ; 130(6): 845-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26374446

RESUMO

Hexanucleotide repeat expansion in C9ORF72 is the most common genetic cause of frontotemporal dementia and motor neuron disease. One consequence of the mutation is the formation of different potentially toxic polypeptides composed of dipeptide repeats (DPR) (poly-GA, -GP, -GR, -PA, -PR) generated by repeat-associated non-ATG (RAN) translation. While previous studies focusing on poly-GA pathology have failed to detect any clinico-pathological correlations in C9ORF72 mutation cases, recent data from animal and cell culture models suggested that it may be only specific DPR species that are toxic and only when accumulated in certain intracellular compartments. Therefore, we performed a systematic clinico-pathological correlative analysis with counting of actual numbers of distinct types of inclusion (neuronal cytoplasmic and intranuclear inclusions, dystrophic neurites) for each DPR protein in relevant brain regions (premotor cortex, lower motor neurons) in a cohort of 35 C9ORF72 mutation cases covering the clinical spectrum from those with pure MND, mixed FTD/MND and pure FTD. While each DPR protein pathology had a similar pattern of anatomical distribution, the total amount of inclusions for each DPR protein varied remarkably (poly-GA > GP > GR > PR/PA), indicating that RAN translation seems to be more effective from sense than from antisense transcripts. Importantly, with the exception of moderate associations for the amount of poly-GA-positive dystrophic neurites with degeneration in the frontal cortex and total burden of poly-GA pathology with disease onset, no relationship was identified for any other DPR protein pathology with degeneration or phenotype. Biochemical analysis revealed a close correlation between insoluble DPR protein species and numbers of visible inclusions, while we did not find any evidence for the presence of soluble DPR protein species. Thus, overall our findings strongly argue against a role of DPR protein aggregation as major and exclusive pathomechanism in C9ORF72 pathogenesis. However, this does not exclude that DPR protein formation might be essential in C9ORF72 pathogenesis in interplay with other consequences associated with the C9ORF72 repeat expansion.


Assuntos
Expansão das Repetições de DNA , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/patologia , Proteínas/genética , Adulto , Idoso , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteína C9orf72 , Proteínas de Ligação a DNA/metabolismo , Feminino , Imunofluorescência , Demência Frontotemporal/metabolismo , Heterozigoto , Humanos , Nervo Hipoglosso , Immunoblotting , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/metabolismo , Índice de Gravidade de Doença , Medula Espinal/metabolismo , Medula Espinal/patologia , Bancos de Tecidos
9.
Acta Neuropathol ; 128(4): 485-503, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25120191

RESUMO

Hexanucleotide repeat expansion in C9orf72 is the most common pathogenic mutation in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite the lack of an ATG start codon, the repeat expansion is translated in all reading frames into dipeptide repeat (DPR) proteins, which form insoluble, ubiquitinated, p62-positive aggregates that are most abundant in the cerebral cortex and cerebellum. To specifically analyze DPR toxicity and aggregation, we expressed DPR proteins from synthetic genes containing a start codon but lacking extensive GGGGCC repeats. Poly-Gly-Ala (GA) formed p62-positive cytoplasmic aggregates, inhibited dendritic arborization and induced apoptosis in primary neurons. Quantitative mass spectrometry analysis to identify poly-GA co-aggregating proteins revealed a significant enrichment of proteins of the ubiquitin-proteasome system. Among the other interacting proteins, we identified the transport factor Unc119, which has been previously linked to neuromuscular and axonal function, as a poly-GA co-aggregating protein. Strikingly, the levels of soluble Unc119 are strongly reduced upon poly-GA expression in neurons, suggesting a loss of function mechanism. Similar to poly-GA expression, Unc119 knockdown inhibits dendritic branching and causes neurotoxicity. Unc119 overexpression partially rescues poly-GA toxicity suggesting that poly-GA expression causes Unc119 loss of function. In C9orf72 patients, Unc119 is detectable in 9.5 % of GA inclusions in the frontal cortex, but only in 1.6 % of GA inclusions in the cerebellum, an area largely spared of neurodegeneration. A fraction of neurons with Unc119 inclusions shows loss of cytosolic staining. Poly-GA-induced Unc119 loss of function may thereby contribute to selective vulnerability of neurons with DPR protein inclusions in the pathogenesis of C9orf72 FTLD/ALS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Dipeptídeos/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Caspases/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Expansão das Repetições de DNA/genética , Expansão das Repetições de DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Dipeptídeos/genética , Dipeptídeos/farmacologia , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ligação a RNA/genética , Ratos , Transfecção , Ubiquitina/metabolismo
10.
Int J Cancer ; 132(4): 775-84, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22815235

RESUMO

In primary prostate cancer (PCa), a major cause of cancer-related death in men, the expression of various microRNAs (miRNAs) is deregulated. We previously detected several miRNAs, for example, miR-24 and miR-22, as significantly downregulated in PCa (Szczyrba et al., Mol Cancer Res 2010;8:529-38). An in silico search predicted that zinc finger protein 217 (ZNF217) and importin 7 (IPO7) were potential target genes of these miRNAs. Additionally, for two genes that are deregulated in PCa (heterogeneous nuclear ribonucleoprotein K, hnRNP-K, and vascular endothelial growth factor A, VEGF-A), we identified two regulatory miRNAs, miR-205 and miR-29b. The regulation of the 3'-untranslated regions of the four genes by their respective miRNAs was confirmed by luciferase assays. As expected, the upregulation of ZNF217, hnRNP-K, VEGF-A and IPO7 could be verified at the protein level in the PCa cell lines LNCaP and DU145. ZNF217 and IPO7, which had not yet been studied in PCa, were analyzed in more detail. ZNF217 mRNA is overexpressed in primary PCa samples, and this overexpression translates to an elevated protein level. However, IPO7 was upregulated at the protein level alone. The inhibition of ZNF217 and IPO7 by siRNA resulted in reduced proliferation of the PCa cell lines. ZNF217 could thus be identified as an oncogene that is overexpressed in PCa and affects the growth of PCa cell lines, whereas the function of IPO7 remains to be elucidated in greater detail.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Carioferinas/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transativadores/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Regiões 3' não Traduzidas , Idoso , Proliferação de Células , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Carioferinas/genética , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Neoplasias da Próstata/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Transativadores/genética , Regulação para Cima
11.
Acta Neuropathol ; 126(6): 881-93, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24132570

RESUMO

Massive GGGGCC repeat expansion in the first intron of the gene C9orf72 is the most common known cause of familial frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Despite its intronic localization and lack of an ATG start codon, the repeat region is translated in all three reading frames into aggregating dipeptide-repeat (DPR) proteins, poly-(Gly-Ala), poly-(Gly-Pro) and poly-(Gly-Arg). We took an antibody-based approach to further validate the translation of DPR proteins. To test whether the antisense repeat RNA transcript is also translated, we raised antibodies against the predicted products, poly-(Ala-Pro) and poly-(Pro-Arg). Both antibodies stained p62-positive neuronal cytoplasmic inclusions throughout the cerebellum and hippocampus indicating that not only sense but also antisense strand repeats are translated into DPR proteins in the absence of ATG start codons. Protein products of both strands co-aggregate suggesting concurrent translation of both strands. Moreover, an antibody targeting the putative carboxyl terminus of DPR proteins can detect inclusion pathology in C9orf72 repeat expansion carriers suggesting that the non-ATG translation continues through the entire repeat and beyond. A highly sensitive monoclonal antibody against poly-(Gly-Arg), visualized abundant inclusion pathology in all cortical regions and some inclusions also in motoneurons. Together, our data show that the GGGGCC repeat is bidirectionally translated into five distinct DPR proteins that co-aggregate in the characteristic p62-positive TDP-43 negative inclusions found in FTLD/ALS cases with C9orf72 repeat expansion. Novel monoclonal antibodies against poly-(Gly-Arg) will facilitate pathological diagnosis of C9orf72 FTLD/ALS.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Encéfalo/metabolismo , Degeneração Lobar Frontotemporal/diagnóstico , Proteínas/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72 , Expansão das Repetições de DNA , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Biossíntese de Proteínas , Proteínas/metabolismo
12.
Nucleic Acids Res ; 39(5): 1880-93, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21062812

RESUMO

The Epstein-Barr virus (EBV) is an oncogenic human Herpes virus found in ∼15% of diffuse large B-cell lymphoma (DLBCL). EBV encodes miRNAs and induces changes in the cellular miRNA profile of infected cells. MiRNAs are small, non-coding RNAs of ∼19-26 nt which suppress protein synthesis by inducing translational arrest or mRNA degradation. Here, we report a comprehensive miRNA-profiling study and show that hsa-miR-424, -223, -199a-3p, -199a-5p, -27b, -378, -26b, -23a, -23b were upregulated and hsa-miR-155, -20b, -221, -151-3p, -222, -29b/c, -106a were downregulated more than 2-fold due to EBV-infection of DLBCL. All known EBV miRNAs with the exception of the BHRF1 cluster as well as EBV-miR-BART15 and -20 were present. A computational analysis indicated potential targets such as c-MYB, LATS2, c-SKI and SIAH1. We show that c-MYB is targeted by miR-155 and miR-424, that the tumor suppressor SIAH1 is targeted by miR-424, and that c-SKI is potentially regulated by miR-155. Downregulation of SIAH1 protein in DLBCL was demonstrated by immunohistochemistry. The inhibition of SIAH1 is in line with the notion that EBV impedes various pro-apoptotic pathways during tumorigenesis. The down-modulation of the oncogenic c-MYB protein, although counter-intuitive, might be explained by its tight regulation in developmental processes.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Linfoma Difuso de Grandes Células B/virologia , MicroRNAs/metabolismo , Sítios de Ligação , Linhagem Celular , Proteínas de Ligação a DNA/genética , Infecções por Vírus Epstein-Barr/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Biblioteca Gênica , Herpesvirus Humano 4/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/genética , MicroRNAs/genética , Anotação de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Pequeno RNA não Traduzido/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
13.
Biomedicines ; 11(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36830895

RESUMO

Protein kinase CK2 is a pleiotropic protein kinase, which phosphorylates a number of cellular and viral proteins. Thereby, this kinase is implicated in the regulation of cellular signaling, controlling of cell proliferation, apoptosis, angiogenesis, immune response, migration and invasion. In general, viruses use host signaling mechanisms for the replication of their genome as well as for cell transformation leading to cancer. Therefore, it is not surprising that CK2 also plays a role in controlling viral infection and the generation of cancer cells. Epstein-Barr virus (EBV) lytically infects epithelial cells of the oropharynx and B cells. These latently infected B cells subsequently become resting memory B cells when passing the germinal center. Importantly, EBV is responsible for the generation of tumors such as Burkitt's lymphoma. EBV was one of the first human viruses, which was connected to CK2 in the early nineties of the last century. The present review shows that protein kinase CK2 phosphorylates EBV encoded proteins as well as cellular proteins, which are implicated in the lytic and persistent infection and in EBV-induced neoplastic transformation. EBV-encoded and CK2-phosphorylated proteins together with CK2-phosphorylated cellular signaling proteins have the potential to provide efficient virus replication and cell transformation. Since there are powerful inhibitors known for CK2 kinase activity, CK2 might become an attractive target for the inhibition of EBV replication and cell transformation.

14.
Biochim Biophys Acta ; 1809(11-12): 631-40, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21640213

RESUMO

The Epstein-Barr virus (EBV) is an oncogenic Herpes virus involved in the induction of a variety of human tumours. It was the first virus found to encode microRNAs (miRNAs). MiRNAs are short, non-coding RNAs that in most cases negatively regulate gene expression at the post-transcriptional level. EBV-transformed cells express at least 44 mature viral miRNAs that target viral and cellular genes. In addition, EBV-infection severely deregulates the miRNA profile of the host cell. The presently available information indicates that the virus uses its miRNAs to inhibit the apoptotic response of the infected cell as a means to establish a latent infection. Likewise, EBV-encoded miRNAs interfere in the expression of viral genes in order to mask the infected cell from the immune response. Cellular targets of viral miRNAs are involved in protein traffic within the cell and regulate innate immunity. MiRNA profiling of diffuse large B-cell lymphoma (DLBCL) and nasal NK/T-cell lymphoma (NKTL) showed that only 2% of the miRNAs are derived from the virus, while viral miRNAs comprise up to 20% of the total miRNA in nasopharyngeal carcinoma (NPC) and probably contribute to the formation or maintenance of NPC. The presence of viral miRNAs in exosomes raises the fascinating possibility that virus-infected cells regulate gene expression in the surrounding tissue to avert destruction by the immune system. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.


Assuntos
Herpesvirus Humano 4/genética , MicroRNAs/metabolismo , Animais , Carcinoma/genética , Carcinoma/virologia , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Regulação Viral da Expressão Gênica , Inativação Gênica , Herpesvirus Humano 4/metabolismo , Humanos , Linfoma/genética , Linfoma/virologia , MicroRNAs/genética , Modelos Genéticos
15.
Anal Bioanal Chem ; 402(2): 989-95, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22006244

RESUMO

Procalcitonin (PCT)-a diagnostic serum parameter for bacterial infection and sepsis-is of great interest in the field of biosensors for point-of-care testing. Its detection needs specific biological recognition elements, such as antibodies. Herein, we describe the development and characterization of rat monoclonal antibodies (mAbs) for PCT, and their application in enzyme-linked immunosorbent assays (ELISAs) for the determination of PCT in patient serum samples. From about 50 mAbs, two mAbs, CALCA 2F3 and CALCA 4A6, were selected as a pair with high affinity for PCT in sandwich immunoassays. Both mAbs could be used either as capture or as detection mAb. They were Protein G-purified and biotinylated when used as detection mAb. The setup of two sandwich ELISAs with standards of human recombinant (hr) PCT, using either CALCA 2F3 (assay A) or CALCA 4A6 (assay B) as capture mAbs and the biotinylated mAbs CALCA 4A6 or CALCA 2F3, respectively, as detection mAbs, led to highly specific determinations of PCT without cross-reactivity to calcitonin and katacalcin. Test midpoints (IC(50)) of both assays were determined for hrPCT standards in 4% (w/v) human serum albumin and found with 2.5 (assay A) and 2.7 µg L(-1) (assay B). With both sandwich ELISAs a collection of eight patient serum samples have been determined in comparison to the determination by the Elecsys BRAHMS PCT assay. Good correlations between our prototype ELISAs and the BRAHMS assay could be demonstrated (R (2): assay A, 0.996 and assay B, 0.990). The use of these newly developed anti-PCT mAbs should find broad applications in immunosensors for point-of-care diagnostics of sepsis and systemic inflammation processes.


Assuntos
Anticorpos Monoclonais/análise , Anticorpos Monoclonais/imunologia , Calcitonina/sangue , Calcitonina/imunologia , Precursores de Proteínas/sangue , Precursores de Proteínas/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Reações Antígeno-Anticorpo , Análise Química do Sangue , Peptídeo Relacionado com Gene de Calcitonina , Ensaio de Imunoadsorção Enzimática , Humanos , Ratos , Proteínas Recombinantes/sangue , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade
16.
Cancers (Basel) ; 14(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291816

RESUMO

BACKGROUND: As microRNA-142 (miR-142) is the only human microRNA gene where mutations have consistently been found in about 20% of all cases of diffuse large B-cell lymphoma (DLBCL), we wanted to determine the impact of miR-142 inactivation on protein expression of DLBCL cell lines. METHODS: miR-142 was deleted by CRISPR/Cas9 knockout in cell lines from DLBCL. RESULTS: By proteome analyses, miR-142 knockout resulted in a consistent up-regulation of 52 but also down-regulation of 41 proteins in GC-DLBCL lines BJAB and SUDHL4. Various mitochondrial ribosomal proteins were up-regulated in line with their pro-tumorigenic properties, while proteins necessary for MHC-I presentation were down-regulated in accordance with the finding that miR-142 knockout mice have a defective immune response. CFL2, CLIC4, STAU1, and TWF1 are known targets of miR-142, and we could additionally confirm AKT1S1, CCNB1, LIMA1, and TFRC as new targets of miR-142-3p or -5p. CONCLUSIONS: Seed-sequence mutants of miR-142 confirmed potential targets and novel targets of miRNAs can be identified in miRNA knockout cell lines. Due to the complex contribution of miRNAs within cellular regulatory networks, in particular when miRNAs highly present in RISC complexes are replaced by other miRNAs, primary effects on gene expression may be covered by secondary layers of regulation.

17.
Int J Cancer ; 129(5): 1105-15, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21710493

RESUMO

Epstein-Barr virus (EBV) is a human tumour virus that efficiently growth-transforms primary human B-lymphocytes in vitro. The viral nuclear antigen 2 (EBNA2) is essential for immortalisation of B-cells and stimulates viral and cellular gene expression through interaction with DNA-bound transcription factors. Like its cellular homologue Notch, it associates with the DNA-bound repressor RBPJκ (CSL/CBF1) thereby converting RBPJκ into the active state. For instance, both EBNA2 and Notch activate the cellular HES1 promoter. In EBV-transformed lymphocytes, the RNA of the NP9 protein encoded by human endogenous retrovirus HERV-K(HML-2) Type 1 is strongly up-regulated. The NP9 protein is detectable both in EBV-positive Raji cells, a Burkitt's lymphoma cell line, and in IB4, an EBV-transformed human lymphoblastoid cell line. NP9 binds to LNX that forms a complex with the Notch regulator Numb. Therefore, the function of NP9 vis-à-vis Notch and EBNA2 was analysed. Here, we show that NP9 binds to EBNA2 and negatively affects the EBNA2-mediated activation of the viral C- and LMP2A promoters. In contrast, NP9 did neither interfere in the activation of the HES1 promoter by Notch nor the induction of the viral LMP1 promoter by EBNA2. In an electrophoretic mobility shift analysis, NP9 reduced the binding of EBNA2 to DNA-bound RBPJκ by about 50%. The down-regulation of EBNA2-activity by NP9 might represent a cellular defence mechanism against viral infection or could, alternatively, represent an adaptation of the virus to prevent excessive viral protein production that might otherwise be harmful for the infected cell.


Assuntos
Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Regulação Viral da Expressão Gênica , Produtos do Gene env/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Western Blotting , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Células COS , Núcleo Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Ensaio de Desvio de Mobilidade Eletroforética , Imunofluorescência , Produtos do Gene env/genética , Herpesvirus Humano 4/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Imunoprecipitação , Luciferases/metabolismo , Linfócitos/metabolismo , Ligação Proteica , Receptor Notch1/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição HES-1 , Ativação Transcricional , Proteínas da Matriz Viral/genética
18.
Nucleic Acids Res ; 36(2): 666-75, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18073197

RESUMO

MicroRNAs (miRNAs) have been implicated in sequence-specific cleavage, translational repression or deadenylation of specific target mRNAs resulting in post-transcriptional gene silencing. Epstein-Barr virus (EBV) encodes 23 miRNAs of unknown function. Here we show that the EBV-encoded miRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. MiR-BART2 guides cleavage within the 3'-untranslated region (3'UTR) of BALF5 by virtue of its complete complementarity to its target. Induction of the lytic viral replication cycle results in a reduction of the level of miR-BART2 with a strong concomitant decrease of cleavage of the BALF5 3'UTR. Expression of miR-BART2 down-regulates the activity of a luciferase reporter gene containing the BALF5 3'UTR. Forced expression of miR-BART2 during lytic replication resulted in a 40-50% reduction of the level of BALF5 protein and a 20% reduction of the amount of virus released from EBV-infected cells. Our results are compatible with the notion that EBV-miR-BART2 inhibits transition from latent to lytic viral replication.


Assuntos
Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/genética , MicroRNAs/metabolismo , Interferência de RNA , Proteínas Virais/genética , Regiões 3' não Traduzidas/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Regulação para Baixo , Herpesvirus Humano 4/fisiologia , Humanos , Luciferases/análise , Luciferases/genética , MicroRNAs/genética , Ratos , Proteínas Virais/metabolismo , Replicação Viral
19.
Nucleic Acids Res ; 35(10): e73, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17478510

RESUMO

Non-protein-coding RNAs (ncRNAs) fulfill a wide range of cellular functions from protein synthesis to regulation of gene expression. Identification of novel regulatory ncRNAs by experimental approaches commonly includes the generation of specialized cDNA libraries encoding small ncRNA species. However, such identification is severely hampered by the presence of constitutively expressed and highly abundant 'house-keeping' ncRNAs, such as ribosomal RNAs, small nuclear RNAs or transfer RNAs. We have developed a novel experimental strategy, designated as subtractive hybridization of ncRNA transcripts (SHORT) to specifically select and amplify novel regulatory ncRNAs, which are only expressed at certain stages or under specific growth conditions of cells. The method is based on the selective subtractive hybridization technique, formerly applied to the detection of differentially expressed mRNAs. As a model system, we applied SHORT to Epstein-Barr virus (EBV) infected human B cells. Thereby, we identified 21 novel as well as previously reported ncRNA species to be up-regulated during virus infection. Our method will serve as a powerful tool to identify novel functional ncRNAs acting as genetic switches in the regulation of fundamental cellular processes such as development, tissue differentiation or disease.


Assuntos
Herpesvirus Humano 4/fisiologia , Hibridização de Ácido Nucleico/métodos , RNA não Traduzido/metabolismo , Linfócitos B/metabolismo , Linfócitos B/virologia , Sequência de Bases , Northern Blotting , Linhagem Celular Transformada , Mapeamento Cromossômico , Herpesvirus Humano 4/genética , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Reação em Cadeia da Polimerase , RNA não Traduzido/química , RNA Viral/metabolismo , Regulação para Cima
20.
Neurosci Lett ; 444(1): 11-5, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18708123

RESUMO

The RNA binding motif protein 4 genes RBM4a and RBM4b are located on human chromosome 11q13.2 and encode highly similar proteins of 363 and 359 amino acids, respectively. They contain two RNA recognition motifs (RRMs) and a retroviral-type Zn-finger. RBM4a binds RNA, is involved in alternative splicing and is also a part of the microRNA-processing RISC complex. In particular, RBM4a is involved in exon 10 inclusion of the tau protein. The function of RBM4b is unknown. With new monoclonal antibodies we show that RBM4a is detectable in virtually all tissues and cell lines tested while RBM4b was only found in kidney and liver. Both RBM4a and RBM4b are nuclear phosphoproteins with half-lives of 2.5h and 4.5h, respectively. To our knowledge, this is the first description of RBM4b protein in human tissue. In human brain, expression of RBM4a was strongly up-regulated in cerebellum as compared to forebrain.


Assuntos
Cerebelo/metabolismo , Cérebro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regulação para Cima/fisiologia , Animais , Mapeamento de Epitopos , Meia-Vida , Células HeLa , Humanos , Proteínas de Ligação a RNA/classificação , Proteínas de Ligação a RNA/genética , Coelhos , Ratos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA