Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Cell ; 84(4): 802-810.e6, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157846

RESUMO

Organelle transporters define metabolic compartmentalization, and how this metabolite transport process can be modulated is poorly explored. Here, we discovered that human SLC25A39, a mitochondrial transporter critical for mitochondrial glutathione uptake, is a short-lived protein under dual regulation at the protein level. Co-immunoprecipitation mass spectrometry and CRISPR knockout (KO) in mammalian cells identified that mitochondrial m-AAA protease AFG3L2 is responsible for degrading SLC25A39 through the matrix loop 1. SLC25A39 senses mitochondrial iron-sulfur cluster using four matrix cysteine residues and inhibits its degradation. SLC25A39 protein regulation is robust in developing and mature neurons. This dual transporter regulation, by protein quality control and metabolic sensing, allows modulating mitochondrial glutathione level in response to iron homeostasis, opening avenues for exploring regulation of metabolic compartmentalization. Neuronal SLC25A39 regulation connects mitochondrial protein quality control, glutathione, and iron homeostasis, which were previously unrelated biochemical features in neurodegeneration.


Assuntos
Ferro , Mitocôndrias , Animais , Humanos , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteases Dependentes de ATP/metabolismo , Ferro/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Homeostase , Glutationa/metabolismo , Mamíferos/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(38): e2218150120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695914

RESUMO

The endothelium is a major target of the proinflammatory cytokine, tumor necrosis factor alpha (TNFα). Exposure of endothelial cells (EC) to proinflammatory stimuli leads to an increase in mitochondrial metabolism; however, the function and regulation of elevated mitochondrial metabolism in EC in response to proinflammatory cytokines remain unclear. Studies using high-resolution metabolomics and 13C-glucose and 13C-glutamine labeling flux techniques showed that pyruvate dehydrogenase activity (PDH) and oxidative tricarboxylic acid cycle (TCA) flux are elevated in human umbilical vein ECs in response to overnight (16 h) treatment with TNFα (10 ng/mL). Mechanistic studies indicated that TNFα mediated these metabolic changes via mitochondrial-specific protein degradation of pyruvate dehydrogenase kinase 4 (PDK4, inhibitor of PDH) by the Lon protease via an NF-κB-dependent mechanism. Using RNA sequencing following siRNA-mediated knockdown of the catalytically active subunit of PDH, PDHE1α (PDHA1 gene), we show that PDH flux controls the transcription of approximately one-third of the genes that are up-regulated by TNFα stimulation. Notably, TNFα-induced PDH flux regulates a unique signature of proinflammatory mediators (cytokines and chemokines) but not inducible adhesion molecules. Metabolomics and ChIP sequencing for acetylated modification on lysine 27 of histone 3 (H3K27ac) showed that TNFα-induced PDH flux promotes histone acetylation of specific gene loci via citrate accumulation and ATP-citrate lyase-mediated generation of acetyl CoA. Together, these results uncover a mechanism by which TNFα signaling increases oxidative TCA flux of glucose to support TNFα-induced gene transcription through extramitochondrial acetyl CoA generation and histone acetylation.


Assuntos
Protease La , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Acetilcoenzima A , Células Endoteliais , Histonas , Citocinas
3.
Am J Hum Genet ; 108(4): 722-738, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798445

RESUMO

Progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous rare diseases. Over 70% of PME cases can now be molecularly solved. Known PME genes encode a variety of proteins, many involved in lysosomal and endosomal function. We performed whole-exome sequencing (WES) in 84 (78 unrelated) unsolved PME-affected individuals, with or without additional family members, to discover novel causes. We identified likely disease-causing variants in 24 out of 78 (31%) unrelated individuals, despite previous genetic analyses. The diagnostic yield was significantly higher for individuals studied as trios or families (14/28) versus singletons (10/50) (OR = 3.9, p value = 0.01, Fisher's exact test). The 24 likely solved cases of PME involved 18 genes. First, we found and functionally validated five heterozygous variants in NUS1 and DHDDS and a homozygous variant in ALG10, with no previous disease associations. All three genes are involved in dolichol-dependent protein glycosylation, a pathway not previously implicated in PME. Second, we independently validate SEMA6B as a dominant PME gene in two unrelated individuals. Third, in five families, we identified variants in established PME genes; three with intronic or copy-number changes (CLN6, GBA, NEU1) and two very rare causes (ASAH1, CERS1). Fourth, we found a group of genes usually associated with developmental and epileptic encephalopathies, but here, remarkably, presenting as PME, with or without prior developmental delay. Our systematic analysis of these cases suggests that the small residuum of unsolved cases will most likely be a collection of very rare, genetically heterogeneous etiologies.


Assuntos
Dolicóis/metabolismo , Mutação/genética , Epilepsias Mioclônicas Progressivas/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Feminino , Glicosilação , Humanos , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Epilepsias Mioclônicas Progressivas/classificação , Sequenciamento do Exoma , Adulto Jovem
4.
Brain ; 145(1): 208-223, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34382076

RESUMO

Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy and movement disorder. We evaluated a large cohort of patients (n = 25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor and ataxia. Later in the disease course, they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibres and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.


Assuntos
Alquil e Aril Transferases , Mioclonia , Doenças Neurodegenerativas , Retinose Pigmentar , Criança , Dolicóis/metabolismo , Humanos , Doenças Neurodegenerativas/genética , Retinose Pigmentar/genética
5.
Proc Natl Acad Sci U S A ; 117(34): 20794-20802, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32817466

RESUMO

Cis-prenyltransferase (cis-PTase) catalyzes the rate-limiting step in the synthesis of glycosyl carrier lipids required for protein glycosylation in the lumen of endoplasmic reticulum. Here, we report the crystal structure of the human NgBR/DHDDS complex, which represents an atomic resolution structure for any heterodimeric cis-PTase. The crystal structure sheds light on how NgBR stabilizes DHDDS through dimerization, participates in the enzyme's active site through its C-terminal -RXG- motif, and how phospholipids markedly stimulate cis-PTase activity. Comparison of NgBR/DHDDS with homodimeric cis-PTase structures leads to a model where the elongating isoprene chain extends beyond the enzyme's active site tunnel, and an insert within the α3 helix helps to stabilize this energetically unfavorable state to enable long-chain synthesis to occur. These data provide unique insights into how heterodimeric cis-PTases have evolved from their ancestral, homodimeric forms to fulfill their function in long-chain polyprenol synthesis.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Transferases/química , Transferases/metabolismo , Alquil e Aril Transferases/genética , Sequência de Aminoácidos , Domínio Catalítico , Cromatografia Líquida de Alta Pressão/métodos , Cristalografia por Raios X , Glicosilação , Humanos , Mutação , Domínios Proteicos , Estrutura Secundária de Proteína , Receptores de Superfície Celular/genética , Relação Estrutura-Atividade , Transferases/genética
6.
J Biol Chem ; 292(42): 17351-17361, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28842490

RESUMO

cis-Prenyltransferases (cis-PTs) constitute a large family of enzymes conserved during evolution and present in all domains of life. In eukaryotes and archaea, cis-PT is the first enzyme committed to the synthesis of dolichyl phosphate, an obligate lipid carrier in protein glycosylation reactions. The homodimeric bacterial enzyme, undecaprenyl diphosphate synthase, generates 11 isoprene units and has been structurally and mechanistically characterized in great detail. Recently, we discovered that unlike undecaprenyl diphosphate synthase, mammalian cis-PT is a heteromer consisting of NgBR (Nus1) and hCIT (dehydrodolichol diphosphate synthase) subunits, and this composition has been confirmed in plants and fungal cis-PTs. Here, we establish the first purification system for heteromeric cis-PT and show that both NgBR and hCIT subunits function in catalysis and substrate binding. Finally, we identified a critical RXG sequence in the C-terminal tail of NgBR that is conserved and essential for enzyme activity across phyla. In summary, our findings show that eukaryotic cis-PT is composed of the NgBR and hCIT subunits. The strong conservation of the RXG motif among NgBR orthologs indicates that this subunit is critical for the synthesis of polyprenol diphosphates and cellular function.


Assuntos
Alquil e Aril Transferases/química , Dimetilaliltranstransferase/química , Receptores de Superfície Celular/química , Transferases/química , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transferases/genética , Transferases/metabolismo
7.
EMBO Rep ; 17(2): 167-77, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26755743

RESUMO

NgBR is a transmembrane protein identified as a Nogo-B-interacting protein and recently has been shown to be a subunit required for cis-prenyltransferase (cisPTase) activity. To investigate the integrated role of NgBR in vascular development, we have characterized endothelial-specific NgBR knockout embryos. Here, we show that endothelial-specific NgBR knockout results in embryonic lethality due to vascular development defects in yolk sac and embryo proper. Loss of NgBR in endothelial cells reduces proliferation and promotes apoptosis of the cells largely through defects in the glycosylation of key endothelial proteins including VEGFR2, VE-cadherin, and CD31, and defective glycosylation can be rescued by treatment with the end product of cisPTase activity, dolichol phosphate. Moreover, NgBR functions in endothelial cells during embryogenesis are Nogo-B independent. These data uniquely show the importance of NgBR and protein glycosylation during vascular development.


Assuntos
Endotélio Vascular/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de Superfície Celular/metabolismo , Animais , Apoptose , Caderinas/metabolismo , Proliferação de Células , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/embriologia , Glicosilação , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptores de Superfície Celular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
J Biol Chem ; 291(35): 18582-90, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27402831

RESUMO

cis-Prenyltransferases (cis-PTs) constitute a large family of enzymes conserved during evolution and present in all domains of life. cis-PTs catalyze consecutive condensation reactions of allylic diphosphate acceptor with isopentenyl diphosphate (IPP) in the cis (Z) configuration to generate linear polyprenyl diphosphate. The chain lengths of isoprenoid carbon skeletons vary widely from neryl pyrophosphate (C10) to natural rubber (C>10,000). The homo-dimeric bacterial enzyme, undecaprenyl diphosphate synthase (UPPS), has been structurally and mechanistically characterized in great detail and serves as a model for understanding the mode of action of eukaryotic cis-PTs. However, recent experiments have revealed that mammals, fungal, and long-chain plant cis-PTs are heteromeric enzymes composed of two distantly related subunits. In this review, the classification, function, and evolution of cis-PTs will be discussed with a special emphasis on the role of the newly described NgBR/Nus1 subunit and its plants' orthologs as essential, structural components of the cis-PTs activity.


Assuntos
Dimetilaliltranstransferase , Hemiterpenos , Compostos Organofosforados , Proteínas de Plantas , Biossíntese de Proteínas , Borracha/metabolismo , Animais , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Hemiterpenos/genética , Hemiterpenos/metabolismo , Humanos , Compostos Organofosforados/metabolismo , Proteínas de Plantas/metabolismo
9.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014178

RESUMO

Obesity-linked fatty liver is a significant risk factor for hepatocellular carcinoma (HCC)1,2; however, the molecular mechanisms underlying the transition from non-alcoholic fatty liver disease (NAFLD) to HCC remains unclear. The present study explores the role of the endoplasmic reticulum (ER)-associated protein NgBR, an essential component of the cis-prenyltransferases (cis-PTase) enzyme3, in chronic liver disease. Here we show that genetic depletion of NgBR in hepatocytes of mice (N-LKO) intensifies triacylglycerol (TAG) accumulation, inflammatory responses, ER/oxidative stress, and liver fibrosis, ultimately resulting in HCC development with 100% penetrance after four months on a high-fat diet. Comprehensive genomic and single cell transcriptomic atlas from affected livers provides a detailed molecular analysis of the transition from liver pathophysiology to HCC development. Importantly, pharmacological inhibition of diacylglycerol acyltransferase-2 (DGAT2), a key enzyme in hepatic TAG synthesis, abrogates diet-induced liver damage and HCC burden in N-LKO mice. Overall, our findings establish NgBR/cis-PTase as a critical suppressor of NAFLD-HCC conversion and suggests that DGAT2 inhibition may serve as a promising therapeutic approach to delay HCC formation in patients with advanced non-alcoholic steatohepatitis (NASH).

10.
Glycobiology ; 20(7): 824-32, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20308470

RESUMO

Giardia lamblia, the protist that causes diarrhea, makes an Asn-linked-glycan (N-glycan) precursor that contains just two sugars (GlcNAc(2)) attached by a pyrophosphate linkage to a polyprenol lipid. Because the candidate cis-prenyltransferase of Giardia appears to be more similar to bacterial enzymes than to those of most eukaryotes and because Giardia is missing a candidate dolichol kinase (ortholog to Saccharomyces cerevisiae SEC59 gene product), we wondered how Giardia synthesizes dolichol phosphate (Dol-P), which is used to make N-glycans and glycosylphosphatidylinositol (GPI) anchors. Here we show that cultured Giardia makes an unsaturated polyprenyl pyrophosphate (dehydrodolichol), which contains 11 and 12 isoprene units and is reduced to dolichol. The Giardia cis-prenyltransferase that we have named Gl-UPPS because the enzyme primarily synthesizes undecaprenol pyrophosphate is phylogenetically related to those of bacteria and Trypanosoma rather than to those of other protists, metazoans and fungi. In transformed Saccharomyces, the Giardia cis-prenyltransferase also makes a polyprenol containing 11 and 12 isoprene units and supports normal growth, N-glycosylation and GPI anchor synthesis of a rer2Delta, srt1Delta double-deletion mutant. Finally, despite the absence of an ortholog to SEC59, Giardia has cytidine triphosphate-dependent dolichol kinase activity. These results suggest that the synthetic pathway for Dol-P is conserved in Giardia, even if some of the important enzymes are different from those of higher eukaryotes or remain unidentified.


Assuntos
Giardia lamblia/enzimologia , Transferases/química , Citidina Trifosfato/metabolismo , Fosfatos de Dolicol/metabolismo , Dolicóis/metabolismo , Giardia lamblia/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
JCI Insight ; 5(3)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32051336

RESUMO

Vascular inflammation is present in many cardiovascular diseases, and exogenous glucocorticoids have traditionally been used as a therapy to suppress inflammation. However, recent data have shown that endogenous glucocorticoids, acting through the endothelial glucocorticoid receptor, act as negative regulators of inflammation. Here, we performed ChIP for the glucocorticoid receptor, followed by next-generation sequencing in mouse endothelial cells to investigate how the endothelial glucocorticoid receptor regulates vascular inflammation. We identified a role of the Wnt signaling pathway in this setting and show that loss of the endothelial glucocorticoid receptor results in upregulation of Wnt signaling both in vitro and in vivo using our validated mouse model. Furthermore, we demonstrate glucocorticoid receptor regulation of a key gene in the Wnt pathway, Frzb, via a glucocorticoid response element gleaned from our genomic data. These results suggest a role for endothelial Wnt signaling modulation in states of vascular inflammation.


Assuntos
Endotélio Vascular/metabolismo , Receptores de Glucocorticoides/metabolismo , Via de Sinalização Wnt , Animais , Imunoprecipitação da Cromatina , DNA/metabolismo , Dexametasona/farmacologia , Endotélio Vascular/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Knockout , Família Multigênica , Ligação Proteica , Receptores de Glucocorticoides/efeitos dos fármacos , Vasculite/metabolismo
12.
FEMS Yeast Res ; 9(3): 381-90, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19416104

RESUMO

The isoprenoid pathway in yeasts is important not only for sterol biosynthesis but also for the production of nonsterol molecules, deriving from farnesyl diphosphate (FPP), implicated in N-glycosylation and biosynthesis of heme and ubiquinones. FPP formed from mevalonate in a reaction catalyzed by FPP synthase (Erg20p). In order to investigate the regulation of Erg20p in Saccharomyces cerevisiae, we searched for its protein partners using a two-hybrid screen, and identified five interacting proteins, among them Yta7p. Subsequently, we showed that Yta7p was a membrane-associated protein localized both to the nucleus and to the endoplasmic reticulum. Deletion of YTA7 affected the enzymatic activity of cis-prenyltransferase (the enzyme that utilizes FPP for dolichol biosynthesis) and the cellular levels of isoprenoid compounds. Additionally, it rendered cells hypersensitive to lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) that acts upstream of FPP synthase in the isoprenoid pathway. While HMGR is encoded by two genes, HMG1 and HMG2, only HMG2 overexpression was able to restore growth of the yta7Delta cells in the presence of lovastatin. Moreover, the expression level of the S. cerevisiae YTA7 gene was altered upon impairment of the isoprenoid pathway not only by lovastatin but also by zaragozic acid, an inhibitor of squalene synthase. Altogether, these results provide substantial evidence of Yta7p involvement in the regulation of isoprenoid biosynthesis.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Terpenos/metabolismo , Proteínas Cromossômicas não Histona/genética , Retículo Endoplasmático/química , Deleção de Genes , Geraniltranstransferase/metabolismo , Proteínas de Membrana/análise , Membrana Nuclear/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transferases/metabolismo
13.
Eukaryot Cell ; 7(8): 1344-51, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18552282

RESUMO

Trichomonas vaginalis, the protist that causes vaginal itching, has a huge genome with numerous gene duplications. Recently we found that Trichomonas has numerous genes encoding putative dolichyl-phosphate-glucose (Dol-P-Glc) synthases (encoded by ALG5 genes) despite the fact that Trichomonas lacks the glycosyltransferases (encoded by ALG6, ALG8, and ALG10 genes) that use Dol-P-Glc to glucosylate dolichyl-PP-linked glycans. In addition, Trichomonas does not have a canonical DPM1 gene, encoding a dolichyl-P-mannose (Dol-P-Man) synthase. Here we show Trichomonas membranes have roughly 300 times the Dol-P-Glc synthase activity of Saccharomyces cerevisiae membranes and about one-fifth the Dol-P-Man synthase activity of Saccharomyces membranes. Endogenous Dol-P-hexoses of Trichomonas are relatively abundant and contain 16 isoprene units. Five paralogous Trichomonas ALG5 gene products have Dol-P-Glc synthase activity when expressed as recombinant proteins, and these Trichomonas Alg5s correct a carboxypeptidase N glycosylation defect in a Saccharomyces alg5 mutant in vivo. A recombinant Trichomonas Dpm1, which is deeply divergent in its sequence, has Dol-P-Man synthase activity. When radiolabeled Dol-P-Glc is incubated with Trichomonas membranes, Glc is incorporated into reducing and nonreducing sugars of O-glycans of endogenous glycoproteins. To our knowledge, this is the first demonstration of Dol-P-Glc as a sugar donor for O-glycans on glycoproteins.


Assuntos
Glicoproteínas/metabolismo , Monossacarídeos de Poli-Isoprenil Fosfato/metabolismo , Polissacarídeos/metabolismo , Trichomonas vaginalis/metabolismo , Animais , Dolicol Monofosfato Manose/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Membranas Intracelulares/metabolismo , Manosiltransferases/metabolismo , Trichomonas vaginalis/genética
14.
Genetics ; 207(4): 1371-1386, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28978675

RESUMO

Dolichols are isoprenoid lipids of varying length that act as sugar carriers in glycosylation reactions in the endoplasmic reticulum. In Saccharomyces cerevisiae, there are two cis-prenyltransferases that synthesize polyprenol-an essential precursor to dolichol. These enzymes are heterodimers composed of Nus1 and either Rer2 or Srt1. Rer2-Nus1 and Srt1-Nus1 can both generate dolichol in vegetative cells, but srt1∆ cells grow normally while rer2∆ grows very slowly, indicating that Rer2-Nus1 is the primary enzyme used in mitotically dividing cells. In contrast, SRT1 performs an important function in sporulating cells, where the haploid genomes created by meiosis are packaged into spores. The spore wall is a multilaminar structure and SRT1 is required for the generation of the outer chitosan and dityrosine layers of the spore wall. Srt1 specifically localizes to lipid droplets associated with spore walls, and, during sporulation there is an SRT1-dependent increase in long-chain polyprenols and dolichols in these lipid droplets. Synthesis of chitin by Chs3, the chitin synthase responsible for chitosan layer formation, is dependent on the cis-prenyltransferase activity of Srt1, indicating that polyprenols are necessary to coordinate assembly of the spore wall layers. This work shows that a developmentally regulated cis-prenyltransferase can produce polyprenols that function in cellular processes besides protein glycosylation.


Assuntos
Alquil e Aril Transferases/genética , Quitina Sintase/genética , Dolicóis/genética , Proteínas de Saccharomyces cerevisiae/genética , Esporos Fúngicos/genética , Parede Celular/genética , Quitina/biossíntese , Quitina/genética , Quitosana/química , Quitosana/metabolismo , Dimetilaliltranstransferase/genética , Dolicóis/biossíntese , Retículo Endoplasmático/genética , Haploidia , Meiose/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Tretinoína/análogos & derivados , Tretinoína/metabolismo
15.
Acta Biochim Pol ; 52(1): 221-32, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15827619

RESUMO

In the yeast Saccharomyces cerevisiae the RER2 and SRT1 genes encode Rer2 and Srt1 proteins with cis-prenyltransferase (cis-PT-ase) activity. Both cis-PT-ases utilize farnesyl diphosphate (FPP) as a starter for polyprenyl diphosphate (dolichol backbone) formation. The products of the Rer2 and Srt1 proteins consist of 14-17 and 18-23 isoprene units, respectively. In this work we demonstrate that deletion or overexpression of SRT1 up-regulates the activity of Rer2p and dolichol content. However, upon overexpression of SRT1, preferential synthesis of longer-chain dolichols and a decrease in the amount of the shorter species are observed. Furthermore, overexpression of the ERG20 gene (encoding farnesyl diphosphate synthase, Erg20p) induces transcription of SRT1 mRNA and increases the levels of mRNA for RER2 and DPM1 (dolichyl phosphate mannose synthase, Dpm1p). Subsequently the enzymatic activity of Rer2p and dolichol content are also increased. However, the amount of Dpm1p or its enzymatic activity remain unchanged.


Assuntos
Dolicóis/biossíntese , Saccharomyces cerevisiae/enzimologia , Transferases/metabolismo , Sequência de Bases , Primers do DNA , Genes Fúngicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
16.
Acta Biochim Pol ; 52(1): 207-20, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15827618

RESUMO

Dimethylallyl diphosphate, an isomer of isopentenyl diphosphate, is a common substrate of Mod5p, a tRNA modifying enzyme, and the farnesyl diphosphate synthase Erg20p, the key enzyme of the isoprenoid pathway. rsp5 mutants, defective in the Rsp5 ubiquitin-protein ligase, were isolated and characterized as altering the mitochondrial/cytosolic distribution of Mod5p. To understand better how competition for the substrate determines the regulation at the molecular level, we analyzed the effect of the rsp5-13 mutation on Erg20p expression. The level of Erg20p was three times lower in rsp5-13 compared to the wild type strain and this effect was dependent on active Mod5p. Northern blot analysis indicated a regulatory role of Rsp5p in ERG20 transcription. ERG20 expression was also impaired in pkc1Delta lacking a component of the cell wall integrity signaling pathway. Low expression of Erg20p in rsp5 cells was accompanied by low level of ergosterol, the main end product of the isoprenoid pathway. Additionally, rsp5 strains were resistant to nystatin, which binds to ergosterol present in the plasma membrane, and sensitive to calcofluor white, a drug destabilizing cell wall integrity by binding to chitin. Furthermore, the cell wall structure appeared abnormal in most rsp5-13 cells investigated by electron microscopy and chitin level in the cell wall was increased two-fold. These results indicate that Rsp5p affects the isoprenoid pathway which has important roles in ergosterol biosynthesis, protein glycosylation and transport and in this way may influence the composition of the plasma membrane and cell wall.


Assuntos
Parede Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Ergosterol/genética , Genes Fúngicos , Mutação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Complexos Ubiquitina-Proteína Ligase/genética
17.
Cell Metab ; 20(3): 448-57, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25066056

RESUMO

Dolichol is an obligate carrier of glycans for N-linked protein glycosylation, O-mannosylation, and GPI anchor biosynthesis. cis-prenyltransferase (cis-PTase) is the first enzyme committed to the synthesis of dolichol. However, the proteins responsible for mammalian cis-PTase activity have not been delineated. Here we show that Nogo-B receptor (NgBR) is a subunit required for dolichol synthesis in yeast, mice, and man. Moreover, we describe a family with a congenital disorder of glycosylation caused by a loss of function mutation in the conserved C terminus of NgBR-R290H and show that fibroblasts isolated from patients exhibit reduced dolichol profiles and enhanced accumulation of free cholesterol identically to fibroblasts from mice lacking NgBR. Mutation of NgBR-R290H in man and orthologs in yeast proves the importance of this evolutionarily conserved residue for mammalian cis-PTase activity and function. Thus, these data provide a genetic basis for the essential role of NgBR in dolichol synthesis and protein glycosylation.


Assuntos
Doenças Metabólicas/genética , Receptores de Superfície Celular/genética , Transferases/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Dolicóis/metabolismo , Evolução Molecular , Feminino , Técnicas de Inativação de Genes , Glicosilação , Humanos , Masculino , Doenças Metabólicas/metabolismo , Camundongos , Dados de Sequência Molecular , Mutação Puntual , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transferases/química , Transferases/metabolismo
18.
Eukaryot Cell ; 6(2): 328-36, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17142567

RESUMO

Chs4p (Cal2/Csd4/Skt5) was identified as a protein factor physically interacting with Chs3p, the catalytic subunit of chitin synthase III (CSIII), and is indispensable for its enzymatic activity in vivo. Chs4p contains a putative farnesyl attachment site at the C-terminal end (CVIM motif) conserved in Chs4p of Saccharomyces cerevisiae and other fungi. Several previous reports questioned the role of Chs4p prenylation in chitin biosynthesis. In this study we reinvestigated the function of Chs4p prenylation. We provide evidence that Chs4p is farnesylated by showing that purified Chs4p is recognized by anti-farnesyl antibody and is a substrate for farnesyl transferase (FTase) in vitro and that inactivation of FTase increases the amount of unmodified Chs4p in yeast cells. We demonstrate that abolition of Chs4p prenylation causes a approximately 60% decrease in CSIII activity, which is correlated with a approximately 30% decrease in chitin content and with increased resistance to the chitin binding compound calcofluor white. Furthermore, we show that lack of Chs4p prenylation decreases the average chain length of the chitin polymer. Prenylation of Chs4p, however, is not a factor that mediates plasma membrane association of the protein. Our results provide evidence that the prenyl moiety attached to Chs4p is a factor modulating the activity of CSIII both in vivo and in vitro.


Assuntos
Quitina Sintase/metabolismo , Quitina/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Prenilação de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Quitina Sintase/genética , Quitina Sintase/isolamento & purificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Frações Subcelulares
19.
FEMS Yeast Res ; 2(3): 259-65, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12702274

RESUMO

Dolichol, an isoprenoid lipid, known mainly for its function in protein glycosylation, is synthesised in the mevalonate pathway. The pathway is highly regulated, on multiple levels, by sterol and non-sterol derivatives of mevalonic acid. Farnesyl diphosphate (FPP) and/or FPP-derived molecules have been identified as the main non-sterol compounds regulating degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, one of the regulatory enzymes in the mevalonate pathway. In the present review we concentrate on the effect of overexpression of farnesyl diphosphate synthase on dolichol biosynthesis in yeast. In this context the role of the Yta7 protein, belonging to the AAA ATPase family, in the regulation of FPP flux to the dolichol branch of the mevalonate pathway is discussed, and the effect of FPP and/or derived molecules on the transcription of genes encoding the first enzyme committed to dolichol biosynthesis, i.e. cis-prenyl transferase.


Assuntos
Alquil e Aril Transferases/metabolismo , Dolicóis/biossíntese , Saccharomyces cerevisiae/enzimologia , Alquil e Aril Transferases/genética , Dolicóis/metabolismo , Regulação Fúngica da Expressão Gênica , Geraniltranstransferase , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
20.
FEMS Yeast Res ; 2(1): 31-7, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12702319

RESUMO

tRNA isopentenylation is a branch of an isoprenoid pathway in yeast. There is a competition for a substrate between isoprenoid biosynthetic enzyme Erg20p and tRNA isopentenyltransferase. Here we studied the direct effect of elevated tRNA biosynthesis on ERG20 expression. The maf1-1 mutant of Saccharomyces cerevisiae that has enhanced cellular tRNA levels was used. We show that both ERG20 transcript and Erg20 protein levels are increased in maf1-1. Additionally, maf1-1 leads to decreased ergosterol content in the cells. These effects of maf1-1 are dependent on functional tRNA isopentenyltransferase. Our results indicate that a complex regulation of the isoprenoid pathway involves also an effect of changes in tRNA biosynthesis.


Assuntos
Fosfatos de Poli-Isoprenil/biossíntese , RNA de Transferência/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Alquil e Aril Transferases , Northern Blotting , Ergosterol/biossíntese , Ergosterol/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Mutação , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA