Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 21(10): 4135-4148, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32845140

RESUMO

Thanks to chemical stabilization, aldehyde-assisted fractionation (AAF) of lignocellulosic biomass has recently emerged as a powerful tool for the production of largely uncondensed lignin. Depolymerization of AAF lignin via ether cleavage provides aromatic monomers at near theoretical yields based on ether cleavage and an oligomeric fraction that remains largely unexploited despite its unique material properties. Here, we present an in-depth analytical characterization of AAF oligomers derived from hardwood and softwood in order to elucidate their molecular structures. These bioaromatic oligomers surpass technical Kraft lignin in terms of purity, solubility, and functionality and thus cannot even be compared to this common feedstock directly for material production. Instead, we performed comparative experiments with Kraft oligomers of similar molecular weight (Mn ∼ 1000) obtained through solvent extraction. These oligomers were then formulated into polyurethane materials. Substantial differences in material properties were observed depending on the amount of lignin, the botanical origin, and the biorefining process (AAF vs Kraft), suggesting new design principles for lignin-derived biopolymers with tailored properties. These results highlight the surprising versatility of AAF oligomers towards the design of new biomaterials and further demonstrate that AAF can enable the conversion of all biomass fractions into value-added products.


Assuntos
Lignina , Poliuretanos , Aldeídos , Fracionamento Químico
2.
J Org Chem ; 83(20): 12471-12485, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30176729

RESUMO

The behavior of homochiral 2,3-dihydrothiazoles, easily available from l-cysteine in Diels-Alder reaction with different dienes, "en route" to sterically constrained modified cystines, has been studied. The oxidation level of the sulfur atom of the heterocyclic ring was crucial for the course of the reaction. Whereas 2,3-dihydrothiazoles did not lead to Diels-Alder adducts, 1-oxide and 1,1-dioxide derivatives afforded the exo adduct enantiopurely in high yields and diastereoselectivities. Further elaboration of the resulting adducts provided conformationally restricted quaternary cystines. DFT calculations correctly predict both the reactivity and stereoselectivity observed experimentally.

3.
Antioxidants (Basel) ; 12(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36978906

RESUMO

Lignin is an abundant and renewable source of phenolic compounds that can be used as natural antioxidants to substitute synthetic, petroleum-based alternatives. The development of lignin depolymerization techniques has improved the accessibility of low-molecular-weight phenolic fractions with enhanced antioxidant activity compared to native lignin. The selective esterification of the aliphatic OH groups in these compounds is necessary in order to increase their compatibility with hydrophobic product matrixes, while preserving their antioxidant capacity. In the present work, lipase was chosen as a selective catalyst for the esterification of the monolignol dihydroconiferyl alcohol (DCA), in order to target the esterification of aliphatic OHs without modifying the aromatic groups. The reaction was studied under solvent-assisted and solvent-free conditions, using different fatty acids and substrate ratios. A product yield of 97% could be obtained after 24 h in a solvent-assisted reaction with 2 molar equivalents of fatty acid, or after 3 h in a solvent-free reaction with 10 molar equivalents of the fatty acid. The esterified monolignol showed relevant long-term radical scavenging activity, comparable to other commercial, petroleum-based antioxidants. Different lignin fractions were also used as substrates for enzymatic esterification with different fatty acids, resulting in esterification degrees of 20-58% (of the total aliphatic OH), depending on the specific combination of fatty acid-lignin fractions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA