Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38849029

RESUMO

A group of genetic diseases known as polycystic liver disease (PLD) are distinguished by the gradual development of fluid-filled hepatic cysts formed from cholangiocytes and commonly related to primary cilia defects. The NAD salvage pathway, which sustains cellular bioenergetics and supplies a required substrate for tasks important to rapidly multiplying cells, has a rate-limiting phase that is mediated by nicotinamide phosphoribosyltransferase (NAMPT). In this study, the efficacy and mechanisms of action of FK866, a novel, high-potency NAMPT inhibitor with a good toxicity profile, were assessed. NAMPT-siRNA and FK866 reduced NAD levels and inhibited the proliferation of PLD cells in a dose-dependent manner. Notably, this pharmacologic and siRNA-mediated suppression of NAMPT was less effective in normal cells at the same concentrations. The addition of nicotinamide mononucleotide (NMN), a byproduct of NAMPT that restores NAD concentration, rescued the cellular viability of PLD cells and verified the on-target action of FK866. In FK866-treated PLD cells, mitochondrial respiration and ATP production were impaired and reactive oxygen species production was induced. Importantly, FK866 treatment was associated with improved effects of octreotide, a drug used for PLD treatment. As a result, the use of NAMPT inhibitors, including FK866 therapy, offers the possibility of a further targeted strategy for the therapeutic treatment of PLD.

2.
Am J Pathol ; 193(10): 1455-1467, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37422149

RESUMO

The short-chain fatty acid butyrate, produced from fermentable carbohydrates by gut microbiota in the colon, has multiple beneficial effects on human health. At the intestinal level, butyrate regulates metabolism, helps in the transepithelial transport of fluids, inhibits inflammation, and induces the epithelial defense barrier. The liver receives a large amount of short-chain fatty acids via the blood flowing from the gut via the portal vein. Butyrate helps prevent nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, inflammation, cancer, and liver injuries. It ameliorates metabolic diseases, including insulin resistance and obesity, and plays a direct role in preventing fatty liver diseases. Butyrate has different mechanisms of action, including strong regulatory effects on the expression of many genes by inhibiting the histone deacetylases and modulating cellular metabolism. The present review highlights the wide range of beneficial therapeutic and unfavorable adverse effects of butyrate, with a high potential for clinically important uses in several liver diseases.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Butiratos/metabolismo , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/uso terapêutico , Inflamação/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
3.
Hepatology ; 74(6): 3235-3248, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34322899

RESUMO

BACKGROUND AND AIMS: Sirtuin 1 (SIRT1) is a complex NAD+ -dependent protein deacetylase known to act as a tumor promoter or suppressor in different cancers. Here, we describe a mechanism of SIRT1-induced destabilization of primary cilia in cholangiocarcinoma (CCA). APPROACH AND RESULTS: A significant overexpression of SIRT1 was detected in human CCA specimens and CCA cells including HuCCT1, KMCH, and WITT1 as compared with normal cholangiocytes (H69 and NHC). Small interfering RNA (siRNA)-mediated knockdown of SIRT1 in HuCCT1 cells induced cilia formation, whereas overexpression of SIRT1 in normal cholangiocytes suppressed ciliary expression. Activity of SIRT1 was regulated by presence of NAD+ in CCA cells. Inhibition of NAD -producing enzyme nicotinamide phosphoribosyl transferase increased ciliary length and frequency in CCA cells and in SIRT1-overexpressed H69 cells. Furthermore, we also noted that SIRT1 induces the proteasomal mediated degradation of ciliary proteins, including α-tubulin, ARL13B, and KIF3A. Moreover, overexpression of SIRT1 in H69 and NHC cells significantly induced cell proliferation and, conversely, SIRT1 inhibition in HuCCT1 and KMCH cells using siRNA or sirtinol reduced cell proliferation. In an orthotopic transplantation rat CCA model, the SIRT1 inhibitor sirtinol reduced tumor size and tumorigenic proteins (glioma-associated oncogene 1, phosphorylated extracellular signal-regulated kinase, and IL-6) expression. CONCLUSIONS: In conclusion, these results reveal the tumorigenic role of SIRT1 through modulation of primary cilia formation and provide the rationale for developing therapeutic approaches for CCA using SIRT1 as a target.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Cílios/metabolismo , Sirtuína 1/metabolismo , Animais , Neoplasias dos Ductos Biliares/enzimologia , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/enzimologia , Colangiocarcinoma/patologia , Cílios/patologia , Humanos , Masculino , Transplante de Neoplasias , Ratos , Ratos Endogâmicos F344
4.
Hepatology ; 73(1): 186-203, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32145077

RESUMO

BACKGROUND AND AIMS: Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of symptomatic biliary cysts. Current surgical and pharmacological approaches are ineffective, and liver transplantation represents the only curative option. Ursodeoxycholic acid (UDCA) and histone deacetylase 6 inhibitors (HDAC6is) have arisen as promising therapeutic strategies, but with partial benefits. APPROACH AND RESULTS: Here, we tested an approach based on the design, synthesis, and validation of a family of UDCA synthetic conjugates with selective HDAC6i capacity (UDCA-HDAC6i). Four UDCA-HDAC6i conjugates presented selective HDAC6i activity, UDCA-HDAC6i #1 being the most promising candidate. UDCA orientation within the UDCA-HDAC6i structure was determinant for HDAC6i activity and selectivity. Treatment of polycystic rats with UDCA-HDAC6i #1 reduced their hepatomegaly and cystogenesis, increased UDCA concentration, and inhibited HDAC6 activity in liver. In cystic cholangiocytes UDCA-HDAC6i #1 restored primary cilium length and exhibited potent antiproliferative activity. UDCA-HDAC6i #1 was actively transported into cells through BA and organic cation transporters. CONCLUSIONS: These UDCA-HDAC6i conjugates open a therapeutic avenue for PLDs.


Assuntos
Apoptose , Cistos/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Fígado/patologia , Medicamentos Sintéticos/farmacologia , Ácido Ursodesoxicólico/farmacologia , Animais , Ácidos e Sais Biliares/metabolismo , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Proliferação de Células/efeitos dos fármacos , Cistos/metabolismo , Cistos/patologia , Modelos Animais de Doenças , Desacetilase 6 de Histona/antagonistas & inibidores , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatias/metabolismo , Hepatopatias/patologia , Distribuição Aleatória , Ratos , Ácido Ursodesoxicólico/uso terapêutico
5.
Am J Physiol Gastrointest Liver Physiol ; 318(6): G1022-G1033, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32338033

RESUMO

Reduced ciliary expression is reported in several tumors, including cholangiocarcinoma (CCA). We previously showed primary cilia have tumor suppressor characteristics, and HDAC6 is involved in ciliary loss. However, mechanisms of ciliary disassembly are unknown. Herein, we tested the hypothesis that HDAC6-dependent autophagy of primary cilia, i.e., ciliophagy, is the main mechanism driving ciliary disassembly in CCA. Using the cancer genome atlas database, human CCA cells, and a rat orthotopic CCA model, we assessed basal and HDAC6-regulated autophagy levels. The effects of RNA-silencing or pharmacological manipulations of ciliophagy on ciliary expression were assessed. Interactions of ciliary proteins with autophagy machinery was assessed by immunoprecipitations. Cell proliferation was assessed by MTS and IncuCyte. A CCA rat model was used to assess the effects of pharmacological inhibition of ciliophagy in vivo. Autophagy is increased in human CCA, as well as in a rat orthotopic CCA model and human CCA cell lines. Autophagic flux was decreased via inhibition of HDAC6, while it was increased by its overexpression. Inhibition of autophagy and HDAC6 restores cilia and decreases cell proliferation. LC3 interacts with HDAC6 and ciliary proteins, and the autophagy cargo receptor involved in targeting ciliary components to the autophagy machinery is primarily NBR1. Treatment with chloroquine, Ricolinostat (ACY-1215), or their combination decreased tumor growth in vivo. Mice that overexpress the autophagy transcription factor TFEB show a decrease of ciliary number. These results suggest that ciliary disassembly is mediated by HDAC6-regulated autophagy, i.e., ciliophagy. Inhibition of ciliophagy may decrease cholangiocarcinoma growth and warrant further investigations as a potential therapeutic approach.NEW & NOTEWORTHY This work identifies novel targets against primary ciliary disassembly that can lead to new cholangiocarcinoma therapeutic strategies. Furthermore, ciliary loss has been described in different tumors, increasing the significance of our research.


Assuntos
Colangiocarcinoma/patologia , Cílios/fisiologia , Desacetilase 6 de Histona/metabolismo , Animais , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Desacetilase 6 de Histona/genética , Humanos , Ácidos Hidroxâmicos/farmacologia , Hidroxicloroquina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pirimidinas/farmacologia , Ratos
6.
Hepatology ; 69(4): 1582-1598, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30299561

RESUMO

Cholangiocytes, the epithelial cells lining the biliary tree in the liver, express primary cilia that can detect several kinds of environmental signals and then transmit this information into the cell. We have reported that cilia are significantly reduced in cholangiocarcinoma (CCA) and that the experimental deciliation of normal cells induces a malignant-like phenotype with increased proliferation, anchorage-independent growth, invasion, and migration. Here, we tested the hypothesis that the chemosensory function of cholangiocyte primary cilia acts as a mechanism for tumor suppression. We found that in the presence of extracellular nucleotides cilia-dependent chemosensation of the nucleotides inhibited migration and invasion in normal ciliated cholangiocytes through a P2Y11 receptor and liver kinase B1 (LKB1)-phosphatase and tensin homolog-AKT-dependent mechanism. In contrast, in normal deciliated cholangiocytes and CCA cells, the nucleotides induced the opposite effects, i.e., increased migration and invasion. As activation of LKB1 through a cilia-dependent mechanism was required for the nucleotide-mediated inhibitory effects on migration and invasion, we attempted to activate LKB1 directly, independent of ciliary expression, using the compound hesperidin methyl chalcone (HMC). We found that HMC induced activation of LKB1 in both ciliated and deciliated cells in vitro, resulting in the inhibition of migration and proliferation. Furthermore, using a rat syngeneic orthotopic CCA model, we found that HMC inhibited tumor growth in vivo. Conclusion: These findings highlight the importance of the chemosensory function of primary cilia for the control of migration and invasion and suggest that, by directly activating LKB1 and bypassing the need for primary cilia, it is possible to emulate this chemosensory function in CCA cells; these data warrant further studies evaluating the possibility of using HMC as therapy for CCA.


Assuntos
Neoplasias dos Ductos Biliares/etiologia , Células Quimiorreceptoras/fisiologia , Colangiocarcinoma/etiologia , Cílios/fisiologia , Quinases Proteína-Quinases Ativadas por AMP , Trifosfato de Adenosina/metabolismo , Adenilil Ciclases/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores Purinérgicos P2/metabolismo
7.
Am J Pathol ; 188(4): 981-994, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29366679

RESUMO

Hepatic cystogenesis in polycystic liver disease (PLD) is associated with abnormalities in multiple cellular processes, including elevated cAMP and overexpression of histone deacetylase 6 (HDAC6). Disease progression in polycystic kidney (PCK) rats (an animal model of PLD) is attenuated by inhibition of either cAMP production or HDAC6. Therefore, we hypothesized that concurrent targeting of HDAC6 and cAMP would synergistically reduce cyst growth. Changes in hepatorenal cystogenesis were examined in PCK rats treated with a pan-HDAC inhibitor, panobinostat; three specific HDAC6 inhibitors, ACY-1215, ACY-738, and ACY-241; and a combination of ACY-1215 and the somatostatin receptor analogue, pasireotide. We also assessed effects of ACY-1215 and pasireotide alone and in combination on cell proliferation, cAMP production, and expression of acetylated α-tubulin in vitro in cultured cholangiocytes and the length of primary cilia and the frequency of ciliated cholangiocytes in vivo in PCK rats. Panobinostat and all three HDAC6 inhibitors decreased hepatorenal cystogenesis in PCK rats. ACY-1215 was more effective than other HDAC inhibitors and was chosen for combinational treatment. ACY-1215 + pasireotide combination synergistically reduced cyst growth and increased length of primary cilia in PCK rats. In cultured cystic cholangiocytes, ACY-1215 + pasireotide combination concurrently decreased cell proliferation and inhibited cAMP levels. These data suggest that the combination of drugs that inhibit HDAC6 and cAMP may be an effective therapy for PLD.


Assuntos
Cistos/tratamento farmacológico , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/uso terapêutico , Hepatopatias/tratamento farmacológico , Receptores de Somatostatina/agonistas , Acetilação , Animais , Ductos Biliares/efeitos dos fármacos , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Proliferação de Células/efeitos dos fármacos , Cílios/metabolismo , AMP Cíclico/metabolismo , Cistos/patologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Hepatopatias/patologia , Masculino , Panobinostat/farmacologia , Panobinostat/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Ratos , Somatostatina/análogos & derivados , Somatostatina/farmacologia , Somatostatina/uso terapêutico , Tubulina (Proteína)/metabolismo
8.
Hepatology ; 68(2): 561-573, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29406621

RESUMO

Cholangiocytes normally express primary cilia, a multisensory organelle that detects signals from the cellular environment. Cilia are significantly reduced in cholangiocarcinoma (CCA) by a mechanism involving overexpression of histone deacetylase 6 (HDAC6). Despite HDAC6 overexpression in CCA, we found no differences in its mRNA level, suggesting a posttranscriptional regulation, possibly involving microRNAs (miRNAs). Here, we describe that at least two HDAC6-targeting miRNAs, miR-433 and miR-22, are down-regulated in CCA both in vitro and in vivo. Experimental restoration of these miRNAs in CCA cells reduced HDAC6 expression, induced ciliary restoration, and decreased the malignant phenotype. Furthermore, in contrast to the mature forms, levels of precursor forms of these miRNAs were higher in CCA compared to normal cholangiocytes and accumulated in the nuclei, suggesting a defective nuclear export. We assessed the expression of Exportin-5, the protein responsible for transporting miRNA precursors out of the nucleus, and found it to be reduced by 50% in CCA compared to normal cholangiocytes. Experimental overexpression of Exportin-5 in CCA cells restored precursor and mature forms of these miRNAs to normal levels, inducing a decrease in the expression of HDAC6 and a decrease in the malignant phenotype. Conversely, short hairpin RNA (shRNA) depletion of Exportin-5 in normal cholangiocytes resulted in increased nuclear retention of precursor miRNAs, decreased mature miRNAs, increased cell proliferation, and shorter cilia. CONCLUSION: These data suggest that down-regulated Exportin-5 impairs the nuclear export of miR-433 and miR-22 precursor forms, causing a decrease in levels of mature miR-433 and miR-22 forms, and leading to overexpression of HDAC6 and ciliary loss in CCA. (Hepatology 2018).


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Desacetilase 6 de Histona/metabolismo , MicroRNAs/metabolismo , Neoplasias dos Ductos Biliares/patologia , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Colangiocarcinoma/patologia , Cílios , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Carioferinas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
9.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt B): 1245-1253, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28625917

RESUMO

Cholangiocytes, like most cells, express primary cilia extending from their membranes. These organelles function as antennae which detect stimuli from bile and transmit the information into cells regulating several signaling pathways involved in secretion, proliferation and apoptosis. The ability of primary cilia to detect different signals is provided by ciliary associated proteins which are expressed in its membrane. Defects in the structure and/or function of these organelles lead to cholangiociliopathies that result in cholangiocyte hyperproliferation, altered fluid secretion and absorption. Since primary cilia dysfunction has been observed in several epithelial tumors, including cholangiocarcinoma (CCA), primary cilia have been proposed as tumor suppressor organelles. In addition, the loss of cilia is associated with dysregulation of several molecular pathways resulting in CCA development and progression. Thus, restoration of the primary cilia may be a potential therapeutic approach for several ciliopathies and CCA.


Assuntos
Neoplasias dos Ductos Biliares/etiologia , Ductos Biliares/fisiologia , Colangiocarcinoma/etiologia , Ciliopatias/etiologia , Células Epiteliais/fisiologia , Absorção Fisiológica/fisiologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares/citologia , Ductos Biliares/efeitos dos fármacos , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Cílios/efeitos dos fármacos , Cílios/fisiologia , Ciliopatias/tratamento farmacológico , Ciliopatias/patologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
10.
J Hepatol ; 67(1): 72-83, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28237397

RESUMO

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a biliary malignancy linked to genetic and epigenetic abnormalities, such as hypermethylation of SOX17 promoter. Here, the role of SOX17 in cholangiocyte differentiation and cholangiocarcinogenesis was studied. METHODS: SOX17 expression/function was evaluated along the differentiation of human induced pluripotent stem cells (iPSC) into cholangiocytes, in the dedifferentiation process of normal human cholangiocytes (NHC) in culture and in cholangiocarcinogenesis. Lentiviruses for SOX17 overexpression or knockdown were used. Gene expression and DNA methylation profiling were performed. RESULTS: SOX17 expression is induced in the last stage of cholangiocyte differentiation from iPSC and regulates the acquisition of biliary markers. SOX17 becomes downregulated in NHC undergoing dedifferentiation; experimental SOX17 knockdown in differentiated NHC downregulated biliary markers and promoted baseline and Wnt-dependent proliferation. SOX17 expression is lower in human CCA than in healthy tissue, which correlates with worse survival after tumor resection. In CCA cells, SOX17 overexpression decreased their tumorigenic capacity in murine xenograft models, which was related to increased oxidative stress and apoptosis. In contrast, SOX17 overexpression in NHC did not affect their survival but inhibited their baseline proliferation. In CCA cells, SOX17 inhibited migration, anchorage-independent growth and Wnt/ß-catenin-dependent proliferation, and restored the expression of biliary markers and primary cilium length. In human CCA, SOX17 promoter was found hypermethylated and its expression inversely correlates with the methylation grade. In NHC, Wnt3a decreased SOX17 expression in a DNMT-dependent manner, whereas in CCA, DNMT1 inhibition or silencing upregulated SOX17. CONCLUSIONS: SOX17 regulates the differentiation and maintenance of the biliary phenotype and functions as a tumor suppressor for CCA, being a potential prognostic marker and a promising therapeutic target. LAY SUMMARY: Understanding the molecular mechanisms involved in the pathogenesis of CCA is key in finding new valuable diagnostic and prognostic biomarkers, as well as therapeutic targets. This study provides evidence that SOX17 regulates the differentiation and maintenance of the biliary phenotype, and its downregulation promotes their tumorigenic transformation. SOX17 acts as a tumor suppressor in CCA and its genetic, molecular and/or pharmacological restoration may represent a new promising therapeutic strategy. Moreover, SOX17 expression correlates with the outcome of patients after tumor resection, being a potential prognostic biomarker.


Assuntos
Neoplasias dos Ductos Biliares/etiologia , Ductos Biliares/patologia , Colangiocarcinoma/etiologia , Fatores de Transcrição SOXF/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Fatores de Transcrição SOXF/análise , Fatores de Transcrição SOXF/genética
11.
Int J Mol Sci ; 18(1)2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-28054974

RESUMO

While translational regulation of p53 by the internal ribosome entry site (IRES) at its 5'-untranslated region following DNA damage has been widely accepted, the detailed mechanism underlying the translational control of p53 by its IRES sequence is still poorly understood. In this review, we will focus on the latest progress in identifying novel regulatory proteins of the p53 IRES and in uncovering the functional connection between defective IRES-mediated p53 translation and tumorigenesis. We will also discuss how these findings may lead to a better understanding of the process of oncogenesis and open up new avenues for cancer diagnosis and therapeutics.


Assuntos
Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Sítios Internos de Entrada Ribossomal , Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Regiões 5' não Traduzidas , Animais , Carcinogênese/genética , Humanos , Neoplasias/diagnóstico , Biossíntese de Proteínas , RNA Mensageiro/genética
12.
Semin Liver Dis ; 35(1): 26-35, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25632932

RESUMO

Cholangiocytes, the epithelial cells lining the biliary tree, represent only a small portion of the total liver cell population (3-5%), but they are responsible for the secretion of up to 40% of total daily bile volume. In addition, cholangiocytes are the target of a diverse group of liver diseases affecting the biliary tract, the cholangiopathies; for most of these conditions, the pathological mechanisms are unclear. MicroRNAs (miRNAs) are small, noncoding RNAs that posttranscriptionally regulate gene expression. Thus, it is not surprising that altered miRNA profiles underlie the dysregulation of several proteins involved in the pathobiology of the cholangiopathies, as well as showing promise as diagnostic and prognostic tools. Here the authors review recent work relevant to the role of miRNAs in the etiopathogenesis of several of the cholangiopathies (i.e., fibroinflammatory cholangiopathies and polycystic liver diseases), discuss their value as prognostic and diagnostic tools, and provide suggestions for further research.


Assuntos
Doenças Biliares/genética , Células Epiteliais/metabolismo , MicroRNAs/genética , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos , Atresia Biliar/genética , Atresia Biliar/metabolismo , Sistema Biliar/citologia , Doenças Biliares/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangite Esclerosante/genética , Colangite Esclerosante/metabolismo , Células Epiteliais/citologia , Humanos , Cirrose Hepática Biliar/genética , Cirrose Hepática Biliar/metabolismo , MicroRNAs/metabolismo
13.
Am J Pathol ; 184(3): 600-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24434010

RESUMO

Polycystic liver disease (PLD) is a member of the cholangiopathies, a group of liver diseases in which cholangiocytes, the epithelia lining of the biliary tree, are the target cells. PLDs are caused by mutations in genes involved in intracellular signaling pathways, cell cycle regulation, and ciliogenesis, among others. We previously showed that cystic cholangiocytes have abnormal cell cycle profiles and malfunctioning cilia. Because histone deacetylase 6 (HDAC6) plays an important role in both cell cycle regulation and ciliary disassembly, we examined the role of HDAC6 in hepatic cystogenesis. HDAC6 protein was increased sixfold in cystic liver tissue and in cultured cholangiocytes isolated from both PCK rats (an animal model of PLD) and humans with PLD. Furthermore, pharmacological inhibition of HDAC6 by Tubastatin-A, Tubacin, and ACY-1215 decreased proliferation of cystic cholangiocytes in a dose- and time-dependent manner, and inhibited cyst growth in three-dimensional cultures. Importantly, ACY-1215 administered to PCK rats diminished liver cyst development and fibrosis. In summary, we show that HDAC6 is overexpressed in cystic cholangiocytes both in vitro and in vivo, and its pharmacological inhibition reduces cholangiocyte proliferation and cyst growth. These data suggest that HDAC6 may represent a potential novel therapeutic target for cases of PLD.


Assuntos
Cistos/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Hepatopatias/metabolismo , Anilidas/farmacologia , Anilidas/uso terapêutico , Animais , Ductos Biliares Intra-Hepáticos/citologia , Proliferação de Células , Células Cultivadas , Cílios/metabolismo , Cistos/tratamento farmacológico , Cistos/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Fígado/metabolismo , Fígado/patologia , Hepatopatias/tratamento farmacológico , Hepatopatias/patologia , Masculino , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Ratos , Transdução de Sinais , Fatores de Tempo
14.
Am J Pathol ; 184(1): 110-21, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24211536

RESUMO

Hepatic cystogenesis in polycystic liver diseases is associated with abnormalities of cholangiocyte cilia. Given the crucial association between cilia and centrosomes, we tested the hypothesis that centrosomal defects occur in cystic cholangiocytes of rodents (Pkd2(WS25/-) mice and PCK rats) and of patients with polycystic liver diseases, contributing to disturbed ciliogenesis and cyst formation. We examined centrosomal cytoarchitecture in control and cystic cholangiocytes, the effects of centrosomal abnormalities on ciliogenesis, and the role of the cell-cycle regulator Cdc25A in centrosomal defects by depleting cholangiocytes of Cdc25A in vitro and in vivo and evaluating centrosome morphology, cell-cycle progression, proliferation, ciliogenesis, and cystogenesis. The cystic cholangiocytes had atypical centrosome positioning, supernumerary centrosomes, multipolar spindles, and extra cilia. Structurally aberrant cilia were present in cystic cholangiocytes during ciliogenesis. Depletion of Cdc25A resulted in i) a decreased number of centrosomes and multiciliated cholangiocytes, ii) an increased fraction of ciliated cholangiocytes with longer cilia, iii) a decreased proportion of cholangiocytes in G1/G0 and S phases of the cell cycle, iv) decreased cell proliferation, and v) reduced cyst growth in vitro and in vivo. Our data support the hypothesis that centrosomal abnormalities in cholangiocytes are associated with aberrant ciliogenesis and that accelerated cystogenesis is likely due to overexpression of Cdc25A, providing additional evidence that pharmacological targeting of Cdc25A has therapeutic potential in polycystic liver diseases.


Assuntos
Centrossomo/metabolismo , Centrossomo/ultraestrutura , Cistos/metabolismo , Cistos/ultraestrutura , Hepatopatias/metabolismo , Fosfatases cdc25/biossíntese , Animais , Ductos Biliares/patologia , Western Blotting , Cílios/metabolismo , Cílios/ultraestrutura , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Técnicas de Inativação de Genes , Humanos , Camundongos , Microscopia Confocal , Microscopia Eletrônica , Ratos
15.
J Hepatol ; 60(3): 599-605, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24239776

RESUMO

BACKGROUND & AIMS: The Hedgehog signaling pathway contributes to cholangiocarcinoma biology. However, canonical Hedgehog signaling requires cilia, and cholangiocarcinoma cells often do not express cilia. To resolve this paradox, we examined non-canonical (G-protein coupled, pertussis toxin sensitive) Hedgehog signaling in cholangiocarcinoma cells. METHODS: Human [non-malignant (H69), malignant (HuCC-T1 and Mz-ChA-1)] and rat [non-malignant (BDE1 and NRC), and malignant (BDEneu)] cell lines were employed for this study. A BDE(ΔLoop2) cell line with the dominant-negative receptor Patched-1 was generated with the Sleeping Beauty transposon transfection system. RESULTS: Cilia expression was readily identified in non-malignant, but not in malignant cholangiocarcinoma cell lines. Although the canonical Hh signaling pathway was markedly attenuated in cholangiocarcinoma cells, they were chemotactic to purmorphamine, a small-molecule direct Smoothened agonist. Purmorphamine also induced remodeling of the actin cytoskeleton with formation of filopodia and lamellipodia-like protrusions. All these biological features of cell migration were pertussis toxin sensitive, a feature of G-protein coupled (Gis) receptors. To further test the role of Hedgehog signaling in vivo, we employed a syngeneic orthotopic rat model of cholangiocarcinoma. In vivo, genetic inhibition of the Hedgehog signaling pathway employing BDE(ΔLoop2) cells or pharmacological inhibition with a small-molecule antagonist of Smoothened, vismodegib, was tumor and metastasis suppressive. CONCLUSIONS: Cholangiocarcinoma cells exhibit non-canonical Hedgehog signaling with chemotaxis despite impaired cilia expression. This non-canonical Hedgehog signaling pathway appears to contribute to cholangiocarcinoma progression, thereby, supporting a role for Hedgehog pathway inhibition in human cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos , Quimiotaxia , Colangiocarcinoma/patologia , Proteínas Hedgehog/fisiologia , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Cílios/fisiologia , Humanos , Metástase Neoplásica
16.
Hepatology ; 58(1): 409-21, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23172758

RESUMO

UNLABELLED: In polycystic liver (PLD) and kidney (PKD) diseases, increased cyclic adenosine monophosphate (cAMP) levels trigger hepatorenal cystogenesis. A reduction of the elevated cAMP by targeting somatostatin receptors (SSTRs) with octreotide (OCT; a somatostatin analog that preferentially binds to SSTR2) inhibits cyst growth. Here we compare the effects of OCT to pasireotide (PAS; a more potent somatostatin analog with broader receptor specificity) on: (1) cAMP levels, cell cycle, proliferation, and cyst expansion in vitro using cholangiocytes derived from control and PCK rats (a model of autosomal recessive PKD [ARPKD]), healthy human beings, and patients with autosomal dominant PKD (ADPKD); and (2) hepatorenal cystogenesis in vivo in PCK rats and Pkd2(WS25/-) mice (a model of ADPKD). Expression of SSTRs was assessed in control and cystic cholangiocytes of rodents and human beings. Concentrations of insulin-like growth factor 1 (IGF1) and vascular endothelial growth factor (VEGF) (both involved in indirect action of somatostatin analogs), and expression and localization of SSTRs after treatment were evaluated. We found that PAS was more potent (by 30%-45%) than OCT in reducing cAMP and cell proliferation, affecting cell cycle distribution, decreasing growth of cultured cysts in vitro, and inhibiting hepatorenal cystogenesis in vivo in PCK rats and Pkd2(WS25/-) mice. The levels of IGF1 (but not VEGF) were reduced only in response to PAS. Expression of SSTR1 and SSTR2 (but not SSTR3 and SSTR5) was decreased in cystic cholangiocytes compared to control. Although both OCT and PAS increased the immunoreactivity of SSTR2, only PAS up-regulated SSTR1; neither drug affected cellular localization of SSTRs. CONCLUSION: PAS is more effective than OCT in reducing hepatorenal cystogenesis in rodent models; therefore, it might be more beneficial for the treatment of PKD and PLD.


Assuntos
Cistos/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Octreotida/uso terapêutico , Doenças Renais Policísticas/tratamento farmacológico , Receptores de Somatostatina/efeitos dos fármacos , Somatostatina/análogos & derivados , Animais , Ciclo Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Humanos , Camundongos , Octreotida/metabolismo , Rim Policístico Autossômico Dominante/tratamento farmacológico , Ratos , Receptores de Somatostatina/biossíntese , Receptores de Somatostatina/metabolismo , Somatostatina/metabolismo , Somatostatina/uso terapêutico
17.
Oncogene ; 43(7): 484-494, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135694

RESUMO

Prostate cancer (CaP) is the most diagnosed cancer in males and the second leading cause of cancer deaths. Patients with localized tumors are generally curable. However, no curative treatment exists for patients with advanced and metastatic disease. Therefore, identifying critical proteins involved in the metastatic process would help to develop new therapeutic options for patients with advanced and aggressive CaP. We provide strong evidence that Myeloid differentiation factor-2 (MD2) plays a critical role in metastasis and CaP progression. Analysis of tumor genomic data showed that amplifications of MD2 and increased expression are associated with poor outcomes in patients. Immunohistochemistry analysis of tumor tissues showed a correlation between the expression of MD2 and cancer progression. The Decipher-genomic test validated the potential of MD2 in predicting metastasis. In vitro studies demonstrated that MD2 confers invasiveness by activating MAPK and NF-kB signaling pathways and inducing epithelial-mesenchymal transition. Furthermore, we show that metastatic cells release MD2 (sMD2). We measured serum-sMD2 in patients and found that the level is correlated to disease extent. We determined the significance of MD2 in metastasis in vivo and as a therapeutic target, showing that the molecular and pharmacological targeting of MD2 significantly inhibited metastasis in murine models. We conclude that MD2 predicts metastatic behavior, and serum-MD2 could be studied as a potential non-invasive biomarker for metastasis, whereas MD2 presence on prostate biopsy predicts adverse disease outcome. We suggest MD2-targeted therapies could be developed as potential treatments for aggressive metastatic disease.


Assuntos
Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Biomarcadores , Imuno-Histoquímica , Metástase Neoplásica , NF-kappa B/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transdução de Sinais
18.
Am J Physiol Gastrointest Liver Physiol ; 304(11): G1013-24, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23578785

RESUMO

TGR5, the G protein-coupled bile acid receptor that transmits bile acid signaling into a cell functional response via the intracellular cAMP signaling pathway, is expressed in human and rodent cholangiocytes. However, detailed information on the localization and function of cholangiocyte TGR5 is limited. We demonstrated that in human (H69 cells) and rat cholangiocytes, TGR5 is localized to multiple, diverse subcellular compartments, with its strongest expression on the apical plasma, ciliary, and nuclear membranes. To evaluate the relationship between ciliary TGR5 and the cholangiocyte functional response to bile acid signaling, we used a model of ciliated and nonciliated H69 cells and demonstrated that TGR5 agonists induce opposite changes in cAMP and ERK levels in cells with and without primary cilia. The cAMP level was increased in nonciliated cholangiocytes but decreased in ciliated cells. In contrast, ERK signaling was induced in ciliated cholangiocytes but suppressed in cells without cilia. TGR5 agonists inhibited proliferation of ciliated cholangiocytes but activated proliferation of nonciliated cells. The observed differential effects of TGR5 agonists were associated with the coupling of TGR5 to Gαi protein in ciliated cells and Gαs protein in nonciliated cholangiocytes. The functional responses of nonciliated and ciliated cholangiocytes to TGR5-mediated bile acid signaling may have important pathophysiological significance in cilia-related liver disorders (i.e., cholangiociliopathies), such as polycystic liver disease. In summary, TGR5 is expressed on diverse cholangiocyte compartments, including a primary cilium, and its ciliary localization determines the cholangiocyte functional response to bile acid signaling.


Assuntos
Ácidos e Sais Biliares/farmacologia , Ductos Biliares Intra-Hepáticos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/citologia , Linhagem Celular , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Cílios/metabolismo , Cílios/ultraestrutura , AMP Cíclico/metabolismo , Células Epiteliais/metabolismo , Exossomos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas
19.
Gastroenterology ; 142(3): 622-633.e4, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155366

RESUMO

BACKGROUND & AIMS: In polycystic kidney disease and polycystic liver disease (PLD), the normally nonproliferative hepato-renal epithelia acquire a proliferative, cystic phenotype that is linked to overexpression of cell division cycle 25 (Cdc25)A phosphatase and cell-cycle deregulation. We investigated the effects of Cdc25A inhibition in mice and rats via genetic and pharmacologic approaches. METHODS: Cdc25A(+/-) mice (which have reduced levels of Cdc25A) were cross-bred with polycystic kidney and hepatic disease 1 (Pkhd1(del2/del2)) mice (which have increased levels of Cdc25A and develop hepatic cysts). Cdc25A expression was analyzed in livers of control and polycystic kidney (PCK) rats, control and polycystic kidney 2 (Pkd2(ws25/-)) mice, healthy individuals, and patients with PLD. We examined effects of pharmacologic inhibition of Cdc25A with vitamin K3 (VK3) on the cell cycle, proliferation, and cyst expansion in vitro; hepato-renal cystogenesis in PCK rats and Pkd2(ws25/-)mice; and expression of Cdc25A and the cell-cycle proteins regulated by Cdc25A. We also examined the effects of the Cdc25A inhibitor PM-20 on hepato-renal cystogenesis in Pkd2(ws25/-) mice. RESULTS: Liver weights and hepatic and fibrotic areas were decreased by 32%-52% in Cdc25A(+/-):Pkhd1(del2/del2) mice, compared with Pkhd1(del2/del2) mice. VK3 altered the cell cycle and reduced proliferation of cultured cholangiocytes by 32%-83% and decreased growth of cultured cysts by 23%-67%. In PCK rats and Pkd2(ws25/-) mice, VK3 reduced liver and kidney weights and hepato-renal cystic and fibrotic areas by 18%-34%. PM-20 decreased hepato-renal cystogenesis in Pkd2(ws25/-) mice by 15%. CONCLUSIONS: Cdc25A inhibitors block cell-cycle progression and proliferation, reduce liver and kidney weights and cyst growth in animal models of polycystic kidney disease and PLD, and might be developed as therapeutics for these diseases.


Assuntos
Cistos/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Rim/efeitos dos fármacos , Hepatopatias/tratamento farmacológico , Fígado/efeitos dos fármacos , Rim Policístico Autossômico Recessivo/tratamento farmacológico , Vitamina K 3/farmacologia , Fosfatases cdc25/antagonistas & inibidores , Animais , Ductos Biliares Intra-Hepáticos/efeitos dos fármacos , Ductos Biliares Intra-Hepáticos/enzimologia , Ductos Biliares Intra-Hepáticos/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cistos/enzimologia , Cistos/genética , Cistos/patologia , Modelos Animais de Doenças , Humanos , Rim/enzimologia , Rim/patologia , Fígado/enzimologia , Fígado/patologia , Hepatopatias/enzimologia , Hepatopatias/genética , Hepatopatias/patologia , Camundongos , Camundongos Knockout , Tamanho do Órgão/efeitos dos fármacos , Rim Policístico Autossômico Recessivo/enzimologia , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/patologia , Ratos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Fatores de Tempo , Regulação para Cima , Fosfatases cdc25/deficiência , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA