Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 131(4): 1361-1369, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34498945

RESUMO

The classic dogma of cerebral autoregulation is that cerebral blood flow is steadily maintained across a wide range of perfusion pressures. This has been challenged by recent studies suggesting little to no "autoregulatory plateau" in the relationship between cerebral blood flow and blood pressure (BP). Therefore, the mechanisms underlying the cerebral pressure-flow relationship still require further understanding. Here, we present a novel approach to examine dynamic cerebral autoregulation in conscious Wistar rats (n = 16) instrumented to measure BP and internal carotid blood flow (iCBF), as an indicator of cerebral blood flow. Transient reductions in BP were induced by occluding the vena cava via inflation of a chronically implanted intravascular silicone balloon. Falls in BP were paralleled by progressive decreases in iCBF, with no evidence of a steady-state plateau. No significant changes in internal carotid vascular resistance (iCVR) were observed. In contrast, intravenous infusions of the vasoactive drug sodium nitroprusside (SNP) produced a similar fall in BP but increases in iCBF and decreases in iCVR were observed. These data suggest a considerable confounding influence of vasodilatory drugs such as SNP on cerebrovascular tone in the rat, making them unsuitable to investigate cerebral autoregulation. We demonstrate that our technique of transient vena cava occlusion produced reliable and repeatable depressor responses, highlighting the potential for our approach to permit assessment of the dynamic cerebral pressure-flow relationship over time in conscious rats.NEW & NOTEWORTHY We present a novel technique to overcome the use of vasoactive agents when studying cerebrovascular dynamics in the conscious rat. Our method of vena cava occlusion to reduce BP was associated with decreased iCBF and no change in iCVR. In contrast, comparable BP falls with intravenous SNP increased iCBF and reduced iCVR. Thus, the dynamic cerebral pressure-flow relationship shows a narrower, less level autoregulatory plateau than conventionally thought. We confirm our method allows repeatable assessment of cerebrovascular dynamics in conscious rats.


Assuntos
Circulação Cerebrovascular , Hipotensão , Animais , Pressão Sanguínea , Ratos , Ratos Wistar , Resistência Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA