Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Beilstein J Org Chem ; 20: 830-840, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655556

RESUMO

Linear nitramines (R-N(R')NO2; R' = H or alkyl) are toxic compounds, some with environmental relevance, while others are rare natural product nitramines. One of these natural product nitramines is N-nitroglycine (NNG), which is produced by some Streptomyces strains and exhibits antibiotic activity towards Gram-negative bacteria. An NNG degrading heme enzyme, called NnlA, has recently been discovered in the genome of Variovorax sp. strain JS1663 (Vs NnlA). Evidence is presented that NnlA and therefore, NNG degradation activity is widespread. To achieve this objective, we characterized and tested the NNG degradation activity of five Vs NnlA homologs originating from bacteria spanning several classes and isolated from geographically distinct locations. E. coli transformants containing all five homologs converted NNG to nitrite. Four of these five homologs were isolated and characterized. Each isolated homolog exhibited similar oligomerization and heme occupancy as Vs NnlA. Reduction of this heme was shown to be required for NnlA activity in each homolog, and each homolog degraded NNG to glyoxylate, NO2- and NH4+ in accordance with observations of Vs NnlA. It was also shown that NnlA cannot degrade the NNG analog 2-nitroaminoethanol. The combined data strongly suggest that NnlA enzymes specifically degrade NNG and are found in diverse bacteria and environments. These results imply that NNG is also produced in diverse environments and NnlA may act as a detoxification enzyme to protect bacteria from exposure to NNG.

2.
Environ Sci Technol ; 57(14): 5655-5665, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36976621

RESUMO

Climate warming causes permafrost thaw predicted to increase toxic methylmercury (MeHg) and greenhouse gas [i.e., methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O)] formation. A microcosm incubation study with Arctic tundra soil over 145 days demonstrates that N2O at 0.1 and 1 mM markedly inhibited microbial MeHg formation, methanogenesis, and sulfate reduction, while it slightly promoted CO2 production. Microbial community analyses indicate that N2O decreased the relative abundances of methanogenic archaea and microbial clades implicated in sulfate reduction and MeHg formation. Following depletion of N2O, both MeHg formation and sulfate reduction rapidly resumed, whereas CH4 production remained low, suggesting that N2O affected susceptible microbial guilds differently. MeHg formation strongly coincided with sulfate reduction, supporting prior reports linking sulfate-reducing bacteria to MeHg formation in the Arctic soil. This research highlights complex biogeochemical interactions in governing MeHg and CH4 formation and lays the foundation for future mechanistic studies for improved predictive understanding of MeHg and greenhouse gas fluxes from thawing permafrost ecosystems.


Assuntos
Gases de Efeito Estufa , Compostos de Metilmercúrio , Solo , Compostos de Metilmercúrio/análise , Ecossistema , Gases de Efeito Estufa/análise , Óxido Nitroso/análise , Dióxido de Carbono/análise , Tundra , Metano/análise , Sulfatos/análise , Regiões Árticas
3.
Appl Environ Microbiol ; 88(16): e0102322, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35916514

RESUMO

Linear nitramines are potentially carcinogenic environmental contaminants. The NnlA enzyme from Variovorax sp. strain JS1663 degrades the nitramine N-nitroglycine (NNG)-a natural product produced by some bacteria-to glyoxylate and nitrite (NO2-). Ammonium (NH4+) was predicted as the third product of this reaction. A source of nonheme FeII was shown to be required for initiation of NnlA activity. However, the role of this FeII for NnlA activity was unclear. This study reveals that NnlA contains a b-type heme cofactor. Reduction of this heme-either by a nonheme iron source or dithionite-is required to initiate NnlA activity. Therefore, FeII is not an essential substrate for holoenzyme activity. Our data show that reduced NnlA (FeII-NnlA) catalyzes at least 100 turnovers and does not require O2. Finally, NH4+ was verified as the third product, accounting for the complete nitrogen mass balance. Size exclusion chromatography showed that NnlA is a dimer in solution. Additionally, FeII-NnlA is oxidized by O2 and NO2- and stably binds carbon monoxide (CO) and nitric oxide (NO). These are characteristics shared with heme-binding PAS domains. Furthermore, a structural homology model of NnlA was generated using the PAS domain from Pseudomonas aeruginosa Aer2 as a template. The structural homology model suggested His73 is the axial ligand of the NnlA heme. Site-directed mutagenesis of His73 to alanine decreased the heme occupancy of NnlA and eliminated NNG activity, validating the homology model. We conclude that NnlA forms a homodimeric heme-binding PAS domain protein that requires reduction for initiation of the activity. IMPORTANCE Linear nitramines are potential carcinogens. These compounds result from environmental degradation of high-energy cyclic nitramines and as by-products of carbon capture technologies. Mechanistic understanding of the biodegradation of these compounds is critical to inform strategies for their remediation. Biodegradation of NNG by NnlA from Variovorax sp. strain JS 1663 requires nonheme iron, but its role is unclear. This study shows that nonheme iron is unnecessary. Instead, our study reveals that NnlA contains a heme cofactor, the reduction of which is critical for activating NNG degradation activity. These studies constrain the proposals for NnlA reaction mechanisms, thereby informing mechanistic studies of degradation of anthropogenic nitramine contaminants. In addition, these results will inform future work to design biocatalysts to degrade these nitramine contaminants.


Assuntos
Heme , Dióxido de Nitrogênio , Compostos Ferrosos/metabolismo , Heme/metabolismo , Proteínas Ligantes de Grupo Heme , Ferro/metabolismo , Óxido Nítrico/metabolismo , Dióxido de Nitrogênio/metabolismo
4.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31076430

RESUMO

Soils contain a tangle of minerals, water, nutrients, gases, plant roots, decaying organic matter, and microorganisms which work together to cycle nutrients and support terrestrial plant growth. Most soil microorganisms live in periodically interconnected communities closely associated with soil aggregates, i.e., small (<2 mm), strongly bound clusters of minerals and organic carbon that persist through mechanical disruptions and wetting events. Their spatial structure is important for biogeochemical cycling, and we cannot reliably predict soil biological activities and variability by studying bulk soils alone. To fully understand the biogeochemical processes at work in soils, it is necessary to understand the micrometer-scale interactions that occur between soil particles and their microbial inhabitants. Here, we review the current state of knowledge regarding soil aggregate microbial communities and identify areas of opportunity to study soil ecosystems at a scale relevant to individual cells. We present a framework for understanding aggregate communities as "microbial villages" that are periodically connected through wetting events, allowing for the transfer of genetic material, metabolites, and viruses. We describe both top-down (whole community) and bottom-up (reductionist) strategies for studying these communities. Understanding this requires combining "model system" approaches (e.g., developing mock community artificial aggregates), field observations of natural communities, and broader study of community interactions to include understudied community members, like viruses. Initial studies suggest that aggregate-based approaches are a critical next step for developing a predictive understanding of how geochemical and community interactions govern microbial community structure and nutrient cycling in soil.


Assuntos
Microbiota/fisiologia , Microbiologia do Solo , Ecossistema , Solo
5.
Environ Sci Technol ; 52(3): 1139-1149, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29258315

RESUMO

The dissolution of metal sulfides, such as ZnS, is an important biogeochemical process affecting fate and transport of trace metals in the environment. However, current studies of in situ dissolution of metal sulfides and the effects of structural defects on dissolution are lacking. Here we have examined the dissolution behavior of ZnS nanoparticles synthesized via several abiotic and biological pathways. Specifically, we have examined biogenic ZnS nanoparticles produced by an anaerobic, metal-reducing bacterium Thermoanaerobacter sp. X513 in a Zn-amended, thiosulfate-containing growth medium in the presence or absence of silver (Ag), and abiogenic ZnS nanoparticles were produced by mixing an aqueous Zn solution with either H2S-rich gas or Na2S solution. The size distribution, crystal structure, aggregation behavior, and internal defects of the synthesized ZnS nanoparticles were examined using high-resolution transmission electron microscopy (TEM) coupled with X-ray energy dispersive spectroscopy. The characterization results show that both the biogenic and abiogenic samples were dominantly composed of sphalerite. In the absence of Ag, the biogenic ZnS nanoparticles were significantly larger (i.e., ∼10 nm) than the abiogenic ones (i.e., ∼3-5 nm) and contained structural defects (e.g., twins and stacking faults). The presence of trace Ag showed a restraining effect on the particle size of the biogenic ZnS, resulting in quantum-dot-sized nanoparticles (i.e., ∼3 nm). In situ dissolution experiments for the synthesized ZnS were conducted with a liquid-cell TEM (LCTEM), and the primary factors (i.e., the presence or absence structural defects) were evaluated for their effects on the dissolution behavior using the biogenic and abiogenic ZnS nanoparticle samples with the largest average particle size. Analysis of the dissolution results (i.e., change in particle radius with time) using the Kelvin equation shows that the defect-bearing biogenic ZnS nanoparticles (γ = 0.799 J/m2) have a significantly higher surface energy than the abiogenic ZnS nanoparticles (γ = 0.277 J/m2). Larger defect-bearing biogenic ZnS nanoparticles were thus more reactive than the smaller quantum-dot-sized ZnS nanoparticles. These findings provide new insight into the factors that affect the dissolution of metal sulfide nanoparticles in relevant natural and engineered scenarios, and have important implications for tracking the fate and transport of sulfide nanoparticles and associated metal ions in the environment. Moreover, our study exemplified the use of an in situ method (i.e., LCTEM) to investigate nanoparticle behavior (e.g., dissolution) in aqueous solutions.


Assuntos
Nanopartículas , Compostos de Zinco , Tamanho da Partícula , Prata , Sulfetos
6.
Environ Sci Technol ; 52(8): 4555-4564, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29569920

RESUMO

Molecular composition of the Arctic soil organic carbon (SOC) and its susceptibility to microbial degradation are uncertain due to heterogeneity and unknown SOC compositions. Using ultrahigh-resolution mass spectrometry, we determined the susceptibility and compositional changes of extractable dissolved organic matter (EDOM) in an anoxic warming incubation experiment (up to 122 days) with a tundra soil from Alaska (United States). EDOM was extracted with 10 mM NH4HCO3 from both the organic- and mineral-layer soils during incubation at both -2 and 8 °C. Based on their O:C and H:C ratios, EDOM molecular formulas were qualitatively grouped into nine biochemical classes of compounds, among which lignin-like compounds dominated both the organic and the mineral soils and were the most stable, whereas amino sugars, peptides, and carbohydrate-like compounds were the most biologically labile. These results corresponded with shifts in EDOM elemental composition in which the ratios of O:C and N:C decreased, while the average C content in EDOM, molecular mass, and aromaticity increased after 122 days of incubation. This research demonstrates that certain EDOM components, such as amino sugars, peptides, and carbohydrate-like compounds, are disproportionately more susceptible to microbial degradation than others in the soil, and these results should be considered in SOC degradation models to improve predictions of Arctic climate feedbacks.


Assuntos
Solo , Tundra , Alaska , Regiões Árticas , Carbono
7.
Appl Microbiol Biotechnol ; 102(19): 8329-8339, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30078139

RESUMO

Sequential NanoFermentation (SNF) is a novel process which entails sparging microbially produced gas containing H2S from a primary reactor through a concentrated metal-acetate solution contained in a secondary reactor, thereby precipitating metallic sulfide nanoparticles (e.g., ZnS, CuS, or SnS). SNF holds an advantage over single reactor nanoparticle synthesis strategies, because it avoids exposing the microorganisms to high concentrations of toxic metal and sulfide ions. Also, by segregating the nanoparticle products from biological materials, SNF avoids coating nanoparticles with bioproducts that alter their desired properties. Herein, we report the properties of ZnS nanoparticles formed from SNF as compared with ones produced directly in a primary reactor (i.e., conventional NanoFermentation, or "CNF"), commercially available ZnS, and ZnS chemically synthesized by bubbling H2S gas through a Zn-acetate solution. The ZnS nanoparticles produced by SNF provided improved optical properties due to their smaller crystallite size, smaller overall particle sizes, reduced biotic surface coatings, and reduced structural defects. SNF still maintained the advantages of NanoFermentation technology over chemical synthesis including scalability, reproducibility, and lower hazardous waste burden.


Assuntos
Fermentação/fisiologia , Nanopartículas Metálicas/química , Sulfetos/química , Compostos de Zinco/química , Gases/química , Tamanho da Partícula , Reprodutibilidade dos Testes
8.
Proc Natl Acad Sci U S A ; 112(40): 12384-9, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392527

RESUMO

Glycoside hydrolase (GH) enzymes apply acid/base chemistry to catalyze the decomposition of complex carbohydrates. These ubiquitous enzymes accept protons from solvent and donate them to substrates at close to neutral pH by modulating the pKa values of key side chains during catalysis. However, it is not known how the catalytic acid residue acquires a proton and transfers it efficiently to the substrate. To better understand GH chemistry, we used macromolecular neutron crystallography to directly determine protonation and ionization states of the active site residues of a family 11 GH at multiple pD (pD=pH+0.4) values. The general acid glutamate (Glu) cycles between two conformations, upward and downward, but is protonated only in the downward orientation. We performed continuum electrostatics calculations to estimate the pKa values of the catalytic Glu residues in both the apo- and substrate-bound states of the enzyme. The calculated pKa of the Glu increases substantially when the side chain moves down. The energy barrier required to rotate the catalytic Glu residue back to the upward conformation, where it can protonate the glycosidic oxygen of the substrate, is 4.3 kcal/mol according to free energy simulations. These findings shed light on the initial stage of the glycoside hydrolysis reaction in which molecular motion enables the general acid catalyst to obtain a proton from the bulk solvent and deliver it to the glycosidic oxygen.


Assuntos
Proteínas Fúngicas/química , Glicosídeo Hidrolases/química , Glicosídeos/química , Nêutrons , Biocatálise , Configuração de Carboidratos , Domínio Catalítico , Cristalografia por Raios X , Proteínas Fúngicas/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosídeos/metabolismo , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Químicos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Prótons , Eletricidade Estática , Especificidade por Substrato , Temperatura , Trichoderma/enzimologia
9.
Appl Environ Microbiol ; 83(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526789

RESUMO

Nitramines are key constituents of most of the explosives currently in use and consequently contaminate soil and groundwater at many military facilities around the world. Toxicity from nitramine contamination poses a health risk to plants and animals. Thus, understanding how nitramines are biodegraded is critical to environmental remediation. The biodegradation of synthetic nitramine compounds such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) has been studied for decades, but little is known about the catabolism of naturally produced nitramine compounds. In this study, we report the isolation of a soil bacterium, Variovorax sp. strain JS1663, that degrades N-nitroglycine (NNG), a naturally produced nitramine, and the key enzyme involved in its catabolism. Variovorax sp. JS1663 is a Gram-negative, non-spore-forming motile bacterium isolated from activated sludge based on its ability to use NNG as a sole growth substrate under aerobic conditions. A single gene (nnlA) encodes an iron-dependent enzyme that releases nitrite from NNG through a proposed ß-elimination reaction. Bioinformatics analysis of the amino acid sequence of NNG lyase identified a PAS (Per-Arnt-Sim) domain. PAS domains can be associated with heme cofactors and function as signal sensors in signaling proteins. This is the first instance of a PAS domain present in a denitration enzyme. The NNG biodegradation pathway should provide the basis for the identification of other enzymes that cleave the N-N bond and facilitate the development of enzymes to cleave similar bonds in RDX, nitroguanidine, and other nitramine explosives.IMPORTANCE The production of antibiotics and other allelopathic chemicals is a major aspect of chemical ecology. The biodegradation of such chemicals can play an important ecological role in mitigating or eliminating the effects of such compounds. N-Nitroglycine (NNG) is produced by the Gram-positive filamentous soil bacterium Streptomyces noursei This study reports the isolation of a Gram-negative soil bacterium, Variovorax sp. strain JS1663, that is able to use NNG as a sole growth substrate. The proposed degradation pathway occurs via a ß-elimination reaction that releases nitrite from NNG. The novel NNG lyase requires iron(II) for activity. The identification of a novel enzyme and catabolic pathway provides evidence of a substantial and underappreciated flux of the antibiotic in natural ecosystems. Understanding the NNG biodegradation pathway will help identify other enzymes that cleave the N-N bond and facilitate the development of enzymes to cleave similar bonds in synthetic nitramine explosives.


Assuntos
Compostos de Anilina/metabolismo , Proteínas de Bactérias/metabolismo , Substâncias Explosivas/metabolismo , Ferro/metabolismo , Liases/metabolismo , Nitrobenzenos/metabolismo , Rhodococcus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Biodegradação Ambiental , Liases/química , Liases/genética , Nitritos/metabolismo , Domínios Proteicos , Rhodococcus/genética , Rhodococcus/isolamento & purificação , Rhodococcus/metabolismo , Microbiologia do Solo
10.
Appl Microbiol Biotechnol ; 100(18): 7921-31, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27118014

RESUMO

The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale (≤ 24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of pilot-plant scale experiments were performed using 100-L and 900-L reactors. Pasteurization and N2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2-nm average crystallite size (ACS) and yields of ~0.5 g L(-1), similar to the small-scale batches. The 900-L pilot plant reactor produced ~320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width × 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic, and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98 % of the buffer chemical costs. The final NP products were characterized using XRD, ICP-OES, TEM, FTIR, PL, DLS, HPLC, and C/N analyses, which confirmed that the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.


Assuntos
Nanopartículas/metabolismo , Sulfetos/metabolismo , Thermoanaerobacter/metabolismo , Compostos de Zinco/metabolismo , Anaerobiose , Concentração de Íons de Hidrogênio
11.
Glob Chang Biol ; 21(2): 722-37, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25308891

RESUMO

Arctic permafrost ecosystems store ~50% of global belowground carbon (C) that is vulnerable to increased microbial degradation with warmer active layer temperatures and thawing of the near surface permafrost. We used anoxic laboratory incubations to estimate anaerobic CO2 production and methanogenesis in active layer (organic and mineral soil horizons) and permafrost samples from center, ridge and trough positions of water-saturated low-centered polygon in Barrow Environmental Observatory, Barrow AK, USA. Methane (CH4 ) and CO2 production rates and concentrations were determined at -2, +4, or +8 °C for 60 day incubation period. Temporal dynamics of CO2 production and methanogenesis at -2 °C showed evidence of fundamentally different mechanisms of substrate limitation and inhibited microbial growth at soil water freezing points compared to warmer temperatures. Nonlinear regression better modeled the initial rates and estimates of Q10 values for CO2 that showed higher sensitivity in the organic-rich soils of polygon center and trough than the relatively drier ridge soils. Methanogenesis generally exhibited a lag phase in the mineral soils that was significantly longer at -2 °C in all horizons. Such discontinuity in CH4 production between -2 °C and the elevated temperatures (+4 and +8 °C) indicated the insufficient representation of methanogenesis on the basis of Q10 values estimated from both linear and nonlinear models. Production rates for both CH4 and CO2 were substantially higher in organic horizons (20% to 40% wt. C) at all temperatures relative to mineral horizons (<20% wt. C). Permafrost horizon (~12% wt. C) produced ~5-fold less CO2 than the active layer and negligible CH4 . High concentrations of initial exchangeable Fe(II) and increasing accumulation rates signified the role of iron as terminal electron acceptors for anaerobic C degradation in the mineral horizons.


Assuntos
Dióxido de Carbono/metabolismo , Mudança Climática , Metano/metabolismo , Pergelissolo/química , Pergelissolo/microbiologia , Alaska , Anaerobiose , Carbono/metabolismo , Temperatura
12.
Nanotechnology ; 26(32): 325602, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26207018

RESUMO

Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. The capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.


Assuntos
Bactérias Anaeróbias , Nanopartículas Metálicas/microbiologia , Pontos Quânticos/microbiologia , Aminas/química , Compostos de Cádmio/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Ácido Oleico/química , Tamanho da Partícula , Pontos Quânticos/química , Pontos Quânticos/ultraestrutura , Sulfetos/química , Propriedades de Superfície , Compostos de Estanho/química , Compostos de Zinco/química
13.
mSphere ; 9(7): e0025924, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38860762

RESUMO

Climate change is rapidly transforming Arctic landscapes where increasing soil temperatures speed up permafrost thaw. This exposes large carbon stocks to microbial decomposition, possibly worsening climate change by releasing more greenhouse gases. Understanding how microbes break down soil carbon, especially under the anaerobic conditions of thawing permafrost, is important to determine future changes. Here, we studied the microbial community dynamics and soil carbon decomposition potential in permafrost and active layer soils under anaerobic laboratory conditions that simulated an Arctic summer thaw. The microbial and viral compositions in the samples were analyzed based on metagenomes, metagenome-assembled genomes, and metagenomic viral contigs (mVCs). Following the thawing of permafrost, there was a notable shift in microbial community structure, with fermentative Firmicutes and Bacteroidota taking over from Actinobacteria and Proteobacteria over the 60-day incubation period. The increase in iron and sulfate-reducing microbes had a significant role in limiting methane production from thawed permafrost, underscoring the competition within microbial communities. We explored the growth strategies of microbial communities and found that slow growth was the major strategy in both the active layer and permafrost. Our findings challenge the assumption that fast-growing microbes mainly respond to environmental changes like permafrost thaw. Instead, they indicate a common strategy of slow growth among microbial communities, likely due to the thermodynamic constraints of soil substrates and electron acceptors, and the need for microbes to adjust to post-thaw conditions. The mVCs harbored a wide range of auxiliary metabolic genes that may support cell protection from ice formation in virus-infected cells. IMPORTANCE: As the Arctic warms, thawing permafrost unlocks carbon, potentially accelerating climate change by releasing greenhouse gases. Our research delves into the underlying biogeochemical processes likely mediated by the soil microbial community in response to the wet and anaerobic conditions, akin to an Arctic summer thaw. We observed a significant shift in the microbial community post-thaw, with fermentative bacteria like Firmicutes and Bacteroidota taking over and switching to different fermentation pathways. The dominance of iron and sulfate-reducing bacteria likely constrained methane production in the thawing permafrost. Slow-growing microbes outweighed fast-growing ones, even after thaw, upending the expectation that rapid microbial responses to dominate after permafrost thaws. This research highlights the nuanced and complex interactions within Arctic soil microbial communities and underscores the challenges in predicting microbial response to environmental change.


Assuntos
Carbono , Microbiota , Oxirredução , Pergelissolo , Microbiologia do Solo , Solo , Pergelissolo/microbiologia , Regiões Árticas , Carbono/metabolismo , Solo/química , Mudança Climática , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Metagenoma , Metano/metabolismo , Congelamento
14.
Environ Pollut ; 299: 118878, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085651

RESUMO

Arctic tundra soils store a globally significant amount of mercury (Hg), which could be transformed to the neurotoxic methylmercury (MeHg) upon warming and thus poses serious threats to the Arctic ecosystem. However, our knowledge of the biogeochemical drivers of MeHg production is limited in these soils. Using substrate addition (acetate and sulfate) and selective microbial inhibition approaches, we investigated the geochemical drivers and dominant microbial methylators in 60-day microcosm incubations with two tundra soils: a circumneutral fen soil and an acidic bog soil, collected near Nome, Alaska, United States. Results showed that increasing acetate concentration had negligible influences on MeHg production in both soils. However, inhibition of sulfate-reducing bacteria (SRB) completely stalled MeHg production in the fen soil in the first 15 days, whereas addition of sulfate in the low-sulfate bog soil increased MeHg production by 5-fold, suggesting prominent roles of SRB in Hg(II) methylation. Without the addition of sulfate in the bog soil or when sulfate was depleted in the fen soil (after 15 days), both SRB and methanogens contributed to MeHg production. Analysis of microbial community composition confirmed the presence of several phyla known to harbor microorganisms associated with Hg(II) methylation in the soils. The observations suggest that SRB and methanogens were mainly responsible for Hg(II) methylation in these tundra soils, although their relative contributions depended on the availability of sulfate and possibly syntrophic metabolisms between SRB and methanogens.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Microbiota , Poluentes do Solo , Mercúrio/análise , Compostos de Metilmercúrio/análise , Solo , Poluentes do Solo/análise , Áreas Alagadas
15.
J Proteome Res ; 10(12): 5302-14, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21988591

RESUMO

Mass spectrometric analysis of Caldicellulosiruptor obsidiansis cultures grown on four different carbon sources identified 65% of the cells' predicted proteins in cell lysates and supernatants. Biological and technical replication together with sophisticated statistical analysis were used to reliably quantify protein abundances and their changes as a function of carbon source. Extracellular, multifunctional glycosidases were significantly more abundant on cellobiose than on the crystalline cellulose substrates Avicel and filter paper, indicating either disaccharide induction or constitutive protein expression. Highly abundant flagellar, chemotaxis, and pilus proteins were detected during growth on insoluble substrates, suggesting motility or specific substrate attachment. The highly abundant extracellular binding protein COB47_0549 together with the COB47_1616 ATPase might comprise the primary ABC-transport system for cellooligosaccharides, while COB47_0096 and COB47_0097 could facilitate monosaccharide uptake. Oligosaccharide degradation can occur either via extracellular hydrolysis by a GH1 ß-glycosidase or by intracellular phosphorolysis using two GH94 enzymes. When C. obsidiansis was grown on switchgrass, the abundance of hemicellulases (including GH3, GH5, GH51, and GH67 enzymes) and certain sugar transporters increased significantly. Cultivation on biomass also caused a concerted increase in cytosolic enzymes for xylose and arabinose fermentation.


Assuntos
Proteínas de Bactérias/química , Celobiose/química , Celulose/química , Bactérias Gram-Positivas/química , Poaceae/química , Proteômica/métodos , Proteínas de Bactérias/análise , Metabolismo dos Carboidratos , Carbono/química , Meios de Cultura/química , Fermentação , Glicosídeo Hidrolases/química , Bactérias Gram-Positivas/enzimologia , Bactérias Gram-Positivas/crescimento & desenvolvimento , Espectrometria de Massas , Transporte Proteico , Reprodutibilidade dos Testes , Solubilidade
16.
Mol Microbiol ; 78(3): 533-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21038477

RESUMO

Hepatotoxic aflatoxins have found a worthy adversary in two new families of bacterial oxidoreductases. These enzymes use the reduced coenzyme F420 to initiate the degradation of furanocoumarin compounds, including the major mycotoxin products of Aspergillus flavus. Along with pyridoxal 5'-phosphate synthases and aryl nitroreductases, these proteins form a large and versatile superfamily of flavin and deazaflavin-dependent oxidoreductases. F420-dependent members of this family appear to share a common mechanism of hydride transfer from the reduced, low-potential deazaflavin to the electron-deficient ring systems of their substrates.


Assuntos
Aflatoxinas/metabolismo , Mycobacterium/metabolismo , Riboflavina/análogos & derivados , Microbiologia do Solo , Aflatoxinas/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Mycobacterium/química , Oxirredutases/química , Oxirredutases/metabolismo , Riboflavina/química , Riboflavina/metabolismo
17.
Appl Environ Microbiol ; 77(12): 4042-54, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21498747

RESUMO

The extremely thermophilic, Gram-positive bacteria Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis efficiently degrade both cellulose and hemicellulose, which makes them relevant models for lignocellulosic biomass deconstruction to produce sustainable biofuels. To identify the shared and unique features of secreted cellulolytic apparatuses from C. bescii and C. obsidiansis, label-free quantitative proteomics was used to analyze protein abundance over the course of fermentative growth on crystalline cellulose. Both organisms' secretomes consisted of more than 400 proteins, of which the most abundant were multidomain glycosidases, extracellular solute-binding proteins, flagellin, putative pectate lyases, and uncharacterized proteins with predicted secretion signals. Among the identified proteins, 53 to 57 significantly changed in abundance during cellulose fermentation in favor of glycosidases and extracellular binding proteins. Mass spectrometric characterizations, together with cellulase activity measurements, revealed a substantial abundance increase of a few bifunctional multidomain glycosidases composed of glycosidase (GH) domain family 5, 9, 10, 44, or 48 and family 3 carbohydrate binding (CBM3) modules. In addition to their orthologous cellulases, the organisms expressed unique glycosidases with different domain organizations: C. obsidiansis expressed the COB47_1671 protein with GH10/5 domains, while C. bescii expressed the Athe_1857 (GH10/48) and Athe_1859 (GH5/44) proteins. Glycosidases containing CBM3 domains were selectively enriched via binding to amorphous cellulose. Preparations from both bacteria contained highly thermostable enzymes with optimal cellulase activities at 85°C and pH 5. The C. obsidiansis preparation, however, had higher cellulase specific activity and greater thermostability. The C. bescii culture produced more extracellular protein and additional SDS-PAGE bands that demonstrated glycosidase activity.


Assuntos
Celulases/análise , Celulases/metabolismo , Bactérias Gram-Positivas/enzimologia , Proteômica/métodos , Celulose/metabolismo , Eletroforese em Gel de Poliacrilamida , Fermentação , Perfilação da Expressão Gênica , Bactérias Gram-Positivas/crescimento & desenvolvimento , Espectrometria de Massas
18.
Proc Natl Acad Sci U S A ; 105(23): 8102-7, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18535141

RESUMO

The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name, "Candidatus Korarchaeum cryptofilum," which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49%. Of the 1,617 predicted protein-coding genes, 1,382 (85%) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.


Assuntos
Evolução Biológica , Genoma Arqueal/genética , Korarchaeota/genética , Ciclo Celular , Replicação do DNA , Metabolismo Energético , Evolução Molecular , Korarchaeota/citologia , Korarchaeota/ultraestrutura , Filogenia , Biossíntese de Proteínas , Análise de Sequência de DNA , Transcrição Gênica
19.
J Occup Environ Med ; 63(7): 548-556, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33741830

RESUMO

OBJECTIVE: The COVID-19 pandemic jeopardizes continuity of operations of workplaces and the health and safety of workers. Exemplar workplace-related SARS-CoV-2 benchmarks are described and illustrated with empirical data. METHODS: Benchmarks were collected over a 9-month period on a large workplace (N = 5500+). These ranged from quantitative indices associated with RT-qPCR targeted testing and random surveillance screening, surveillance for new variants of SARS-CoV-2, intensive contact tracing, case management, return to work procedures, to monitoring of antibody seropositive status. RESULTS: Data and analyses substantiated effectiveness of interventions. This was evidenced in suppressed infection rates, rapid case identification and isolation, acceptance of the program by employees, documentation of presumptive immunity, and working relationships with senior management. CONCLUSIONS: These SARS-CoV-2 exemplar benchmarks provided an evidence-base for practice and contributed strategically to organizational decisions.


Assuntos
Benchmarking , COVID-19/prevenção & controle , Saúde Ocupacional , Vigilância em Saúde Pública/métodos , Local de Trabalho , COVID-19/epidemiologia , Teste de Ácido Nucleico para COVID-19 , Busca de Comunicante , Humanos , Pandemias , SARS-CoV-2
20.
J Bacteriol ; 192(22): 6099-100, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20851897

RESUMO

Caldicellulosiruptor obsidiansis OB47(T) (ATCC BAA-2073, JCM 16842) is an extremely thermophilic, anaerobic bacterium capable of hydrolyzing plant-derived polymers through the expression of multidomain/multifunctional hydrolases. The complete genome sequence reveals a diverse set of carbohydrate-active enzymes and provides further insight into lignocellulosic biomass hydrolysis at high temperatures.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Bactérias Gram-Positivas/genética , Anaerobiose , Celulose/metabolismo , Bactérias Gram-Positivas/metabolismo , Temperatura Alta , Hidrolases/genética , Hidrolases/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA