Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 810
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(22): e2120817119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35605118

RESUMO

Fish are an important source of bioavailable micronutrients and essential fatty acids, and capture fisheries have potential to substantially reduce dietary deficiencies. Vigorous debate has focused on trade and fishing in foreign waters as drivers of inequitable distribution of volume and value of fish, but their impact on nutrient supplies from fish is unknown. We analyze global catch, trade, and nutrient composition data for marine fisheries to quantify distribution patterns among countries with differing prevalence of inadequate nutrient intake. We find foreign fishing relocates 1.5 times more nutrients than international trade in fish. Analysis of nutrient flows among countries of different levels of nutrient intake shows fishing in foreign waters predominantly (but not exclusively) benefits nutrient-secure nations, an outcome amplified by trade. Next, we developed a nutritional vulnerability framework that shows those small island developing states and/or African nations currently benefiting from trade and foreign fishing, and countries with low adaptive capacity, are most vulnerable to future changes in nutrient supplies. Climate change exacerbates vulnerabilities for many nations. Harnessing the potential of global fisheries to address dietary deficiencies will require greater attention to nutrition objectives in fisheries' licensing deals and trade negotiations.


Assuntos
Internacionalidade , Desnutrição , Animais , Comércio , Conservação dos Recursos Naturais , Pesqueiros , Peixes , Abastecimento de Alimentos , Humanos , Caça , Nutrientes
2.
J Physiol ; 602(6): 1105-1126, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400808

RESUMO

Skeletal muscle has a broad range of biomechanical functions, including power generation and energy absorption. These roles are underpinned by the force-velocity relationship, which comprises two distinct components: a concentric and an eccentric force-velocity relationship. The concentric component has been extensively studied across a wide range of muscles with different muscle properties. However, to date, little progress has been made in accurately characterising the eccentric force-velocity relationship in mammalian muscle with varying muscle properties. Consequently, mathematical models of this muscle behaviour are based on a poorly understood phenomenon. Here, we present a comprehensive assessment of the concentric force-velocity and eccentric force-velocity relationships of four mammalian muscles (soleus, extensor digitorum longus, diaphragm and digastric) with varying biomechanical functions, spanning three orders of magnitude in body mass (mouse, rat and rabbits). The force-velocity relationship was characterised using a hyperbolic-linear equation for the concentric component a hyperbolic equation for the eccentric component, at the same time as measuring the rate of force development in the two phases of force development in relation to eccentric lengthening velocity. We demonstrate that, despite differences in the curvature and plateau height of the eccentric force-velocity relationship, the rates of relative force development were consistent for the two phases of the force-time response during isovelocity lengthening ramps, in relation to lengthening velocity, in the four muscles studied. Our data support the hypothesis that this relationship depends on cross-bridge and titin activation. Hill-type musculoskeletal models of the eccentric force-velocity relationship for mammalian muscles should incorporate this biphasic force response. KEY POINTS: The capacity of skeletal muscle to generate mechanical work and absorb energy is underpinned by the force-velocity relationship. Despite identification of the lengthening (eccentric) force-velocity relationship over 80 years ago, no comprehensive study has been undertaken to characterise this relationship in skeletal muscle. We show that the biphasic force response seen during active muscle lengthening is conserved over three orders of magnitude of mammalian skeletal muscle mass. Using mice with a small deletion in titin, we show that part of this biphasic force profile in response to muscle lengthening is reliant on normal titin activation. The rate of force development during muscle stretch may be a more reliable way to describe the forces experienced during eccentric muscle contractions compared to the traditional hyperbolic curve fitting, and functions as a novel predictor of force-velocity characteristics that may be used to better inform hill-type musculoskeletal models and assess pathophysiological remodelling.


Assuntos
Contração Muscular , Músculo Esquelético , Humanos , Ratos , Camundongos , Animais , Coelhos , Conectina , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Terapia por Exercício , Diafragma , Mamíferos
3.
J Neurophysiol ; 132(2): 531-543, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38985935

RESUMO

Structural neuroplasticity such as neurite extension and dendritic spine dynamics is enhanced by brain-derived neurotrophic factor (BDNF) and impaired by types of inhibitory molecules that induce growth cone collapse and actin depolymerization, for example, myelin-associated inhibitors, chondroitin sulfate proteoglycans, and negative guidance molecules. These inhibitory molecules can activate RhoA/rho-associated coiled-coil containing protein kinase (ROCK) signaling (known to restrict structural plasticity). Intermittent hypoxia (IH) and high-intensity interval training (HIIT) are known to upregulate BDNF that is associated with improvements in learning and memory and greater functional recovery following neural insults. We investigated whether the RhoA/ROCK signaling pathway is also modulated by IH and HIIT in the hippocampus, cortex, and lumbar spinal cord of male Wistar rats. The gene expression of 25 RhoA/ROCK signaling pathway components was determined following IH, HIIT, or IH combined with HIIT (30 min/day, 5 days/wk, 6 wk). IH included 10 3-min bouts that alternated between hypoxia (15% O2) and normoxia. HIIT included 10 3-min bouts alternating between treadmill speeds of 50 cm·s-1 and 15 cm·s-1. In the hippocampus, IH and HIIT significantly downregulated Acan and NgR2 mRNA that are involved in the inhibition of neuroplasticity. However, IH and IH + HIIT significantly upregulated Lingo-1 and NgR3 in the cortex. This is the first time IH and HIIT have been linked to the modulation of plasticity-inhibiting pathways. These results provide a fundamental step toward elucidating the interplay between the neurotrophic and inhibitory mechanisms involved in experience-driven neural plasticity that will aid in optimizing physiological interventions for the treatment of cognitive decline or neurorehabilitation.NEW & NOTEWORTHY Intermittent hypoxia (IH) and high-intensity interval training (HIIT) enhance neuroplasticity and upregulate neurotrophic factors in the central nervous system (CNS). We provide evidence that IH and IH + HIIT also have the capacity to regulate genes involved in the RhoA/ROCK signaling pathway that is known to restrict structural plasticity in the CNS. This provides a new mechanistic insight into how these interventions may enhance hippocampal-related plasticity and facilitate learning, memory, and neuroregeneration.


Assuntos
Treinamento Intervalado de Alta Intensidade , Hipocampo , Ratos Wistar , Transdução de Sinais , Quinases Associadas a rho , Animais , Masculino , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Hipocampo/metabolismo , Transdução de Sinais/fisiologia , Ratos , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Plasticidade Neuronal/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Medula Espinal/metabolismo , Medula Espinal/fisiologia , Proteínas rho de Ligação ao GTP
4.
Faraday Discuss ; 248(0): 381-391, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37846514

RESUMO

The lithium-air (Li-air) battery offers one of the highest practical specific energy densities of any battery system at >400 W h kgsystem-1. The practical cell is expected to operate in air, which is flowed into the positive porous electrode where it forms Li2O2 on discharge and is released as O2 on charge. The presence of CO2 and H2O in the gas stream leads to the formation of oxidatively robust side products, Li2CO3 and LiOH, respectively. Thus, a gas handling system is needed to control the flow and remove CO2 and H2O from the gas supply. Here we present the first example of an integrated Li-air battery with in-line gas handling, that allows control over the flow and composition of the gas supplied to a Li-air cell and simultaneous evaluation of the cell and scrubber performance. Our findings reveal that O2 flow can drastically impact the capacity of cells and confirm the need for redox mediators. However, we show that current air-electrode designs translated from fuel cell technology are not suitable for Li-air cells as they result in the need for higher gas flow rates than required theoretically. This puts the scrubber under a high load and increases the requirements for solvent saturation and recapture. Our results clarify the challenges that must be addressed to realise a practical Li-air system and will provide vital insight for future modelling and cell development.

5.
S Afr J Psychiatr ; 30: 2160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726329

RESUMO

Background: Despite a massive global increase in research on gender-diverse youth, there have been no studies in Africa on gender-diverse children and adolescents presenting to health services. Aim: This study aimed to present the first African findings of the demographic and mental health profile of youth who have presented at a gender service in South Africa. Setting: A specialist mental health outpatient service, consisting of psychiatry, psychology and nursing input, for gender-diverse child and adolescent patients in the Western Cape. Methods: All consenting youth seen at a gender service, consisting of psychiatry, psychology and nursing input, in state and by the same clinician in private practice between January 2012 and May 2019 were participants of a retrospective, sequential case series study. Data of interest, including gender identity and sexuality, mental health history and social information, were extracted from the psychiatry files of participants. Results: Thirty-nine participants were part of the registry and qualified for the study: 72% self-identified as white, 15% as coloured and 13% as black African. The rate of co-occurring psychopathology was high (64%) and included high rates of autism, particularly in trans males (26%), suicidal ideation in 31% and a history of suicide attempt(s) in 10%. Conclusions: This first study describing gender-diverse youth seeking support relating to their gender identity in Africa showed they had remarkable similarities to those studied internationally. Contribution: Establishing that transgender youth of all major racial groups in the province with similar demographic profiles to other parts of the world are presenting to services in South Africa and in need of mental health support and interventions.

6.
J Am Chem Soc ; 145(16): 9052-9058, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36974427

RESUMO

Understanding ion transport in solid materials is crucial in the design of electrochemical devices. Of particular interest in recent years is the study of ion transport across 2-dimensional, atomically thin crystals. In this contribution, we describe the use of a host-guest hybrid redox material based on polyoxometalates (POMs) encapsulated within the internal cavities of single-walled carbon nanotubes (SWNTs) as a model system for exploring ion transport across atomically thin structures. The nanotube sidewall creates a barrier between the redox-active molecules and bulk electrolytes, which can be probed by addressing the redox states of the POMs electrochemically. The electrochemical properties of the {POM}@SWNT system are strongly linked to the nature of the cation in the supporting electrolyte. While acidic electrolytes facilitate rapid, exhaustive, reversible electron transfer and stability during redox cycling, alkaline-salt electrolytes significantly limit redox switching of the encapsulated species. By "plugging" the {POM}@SWNT material with C60-fullerenes, we demonstrate that the primary mode of charge balancing is proton transport through the graphenic lattice of the SWNT sidewalls. Kinetic analysis reveals little kinetic isotope effect on the standard heterogeneous electron transfer rate constant, suggesting that ion transport through the sidewalls is not rate-limiting in our system. The unique capacity of protons and deuterons to travel through graphenic layers unlocks the redox chemistry of nanoconfined redox materials, with significant implications for the use of carbon-coated materials in applications ranging from electrocatalysis to energy storage and beyond.

7.
J Am Chem Soc ; 145(30): 16365-16373, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37478562

RESUMO

Bridged or caged polycyclic hydrocarbons have rigid structures that project substituents into precise regions of 3D space, making them attractive as linking groups in materials science and as building blocks for medicinal chemistry. The efficient synthesis of new or underexplored classes of such compounds is, therefore, an important objective. Herein, we describe the silver(I)-catalyzed rearrangement of 1,4-disubstituted cubanes to cuneanes, which are strained hydrocarbons that have not received much attention since they were first described in 1970. The synthesis of 2,6-disubstituted or 1,3-disubstituted cuneanes can be achieved with high regioselectivities, with the regioselectivity being dependent on the electronic character of the cubane substituents. A preliminary assessment of cuneanes as scaffolds for medicinal chemistry suggests cuneanes could serve as isosteric replacements of trans-1,4-disubstituted cyclohexanes and 1,3-disubstituted benzenes. An analogue of the anticancer drug sonidegib was synthesized, in which the 1,2,3-trisubstituted benzene was replaced with a 1,3-disubstituted cuneane.

8.
J Am Chem Soc ; 145(2): 1206-1215, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36586130

RESUMO

Boron nitride nanotubes (BNNTs) are an emerging class of molecular container offering new functionalities and possibilities for studying molecules at the nanoscale. Herein, BNNTs are demonstrated as highly effective nanocontainers for polyoxometalate (POM) molecules. The encapsulation of POMs within BNNTs occurs spontaneously at room temperature from an aqueous solution, leading to the self-assembly of a POM@BNNT host-guest system. Analysis of the interactions between the host-nanotube and guest-molecule indicate that Lewis acid-base interactions between W═O groups of the POM (base) and B-atoms of the BNNT lattice (acid) likely play a major role in driving POM encapsulation, with photoactivated electron transfer from BNNTs to POMs in solution also contributing to the process. The transparent nature of the BNNT nanocontainer allows extensive investigation of the guest-molecules by photoluminescence, Raman, UV-vis absorption, and EPR spectroscopies. These studies revealed considerable energy and electron transfer processes between BNNTs and POMs, likely mediated via defect energy states of the BNNTs and resulting in the quenching of BNNT photoluminescence at room temperature, the emergence of new photoluminescence emissions at cryogenic temperatures (<100 K), a photochromic response, and paramagnetic signals from guest-POMs. These phenomena offer a fresh perspective on host-guest interactions at the nanoscale and open pathways for harvesting the functional properties of these hybrid systems.


Assuntos
Nanotubos , Nanotubos/química , Compostos de Boro/química
9.
Ecol Monogr ; 93(1): e1551, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37035419

RESUMO

Insects provide key pollination services in most terrestrial biomes, but this service depends on a multistep interaction between insect and plant. An insect needs to visit a flower, receive pollen from the anthers, move to another conspecific flower, and finally deposit the pollen on a receptive stigma. Each of these steps may be affected by climate change, and focusing on only one of them (e.g., flower visitation) may miss important signals of change in service provision. In this study, we combine data on visitation, pollen transport, and single-visit pollen deposition to estimate functional outcomes in the high Arctic plant-pollinator network of Zackenberg, Northeast Greenland, a model system for global warming-associated impacts in pollination services. Over two decades of rapid climate warming, we sampled the network repeatedly: in 1996, 1997, 2010, 2011, and 2016. Although the flowering plant and insect communities and their interactions varied substantially between years, as expected based on highly variable Arctic weather, there was no detectable directional change in either the structure of flower-visitor networks or estimated pollen deposition. For flower-visitor networks compiled over a single week, species phenologies caused major within-year variation in network structure despite consistency across years. Weekly networks for the middle of the flowering season emerged as especially important because most pollination service can be expected to be provided by these large, highly nested networks. Our findings suggest that pollination ecosystem service in the high Arctic is remarkably resilient. This resilience may reflect the plasticity of Arctic biota as an adaptation to extreme and unpredictable weather. However, most pollination service was contributed by relatively few fly taxa (Diptera: Spilogona sanctipauli and Drymeia segnis [Muscidae] and species of Rhamphomyia [Empididae]). If these key pollinators are negatively affected by climate change, network structure and the pollination service that depends on it would be seriously compromised.

10.
Chembiochem ; 24(18): e202300250, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37391388

RESUMO

'Bacterial-type' ferredoxins host a cubane [4Fe4S]2+/+ cluster that enables these proteins to mediate electron transfer and facilitate a broad range of biological processes. Peptide maquettes based on the conserved cluster-forming motif have previously been reported and used to model the ferredoxins. Herein we explore the integration of a [4Fe4S]-peptide maquette into a H2 -powered electron transport chain. While routinely formed under anaerobic conditions, we illustrate by electron paramagnetic resonance (EPR) analysis that these maquettes can be reconstituted under aerobic conditions by using photoactivated NADH to reduce the cluster at 240 K. Attempts to tune the redox properties of the iron-sulfur cluster by introducing an Fe-coordinating selenocysteine residue were also explored. To demonstrate the integration of these artificial metalloproteins into a semi-synthetic electron transport chain, we utilize a ferredoxin-inspired [4Fe4S]-peptide maquette as the redox partner in the hydrogenase-mediated oxidation of H2 .


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Ferredoxinas/metabolismo , Proteínas Ferro-Enxofre/química , Hidrogenase/metabolismo , Oxirredução , Peptídeos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica
11.
J Muscle Res Cell Motil ; 44(2): 107-114, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36627504

RESUMO

The pectoralis muscles of the blue-breasted quail Coturnix chinensis generate the highest power output over a contraction cycle measured to date, approximately 400 W kg- 1. The power generated during a cyclical contraction is the product of work and cycle frequency (or standard operating frequency), suggesting that high powers should be favoured by operating at high cycle frequencies. Yet the quail muscles operate at an intermediate cycle frequency (23 Hz), which is much lower than the highest frequency skeletal muscles are capable of operating (~ 200 Hz in vertebrates). To understand this apparent anomaly, in this paper I consider the adaptations that favour high mechanical power as well as the trade-offs that occur between force and muscle operating frequency that limit power. It will be shown that adaptations that favour rapid cyclical contractions compromise force generation; consequently, maximum power increases with cycle frequency to approximately 15-25 Hz, but decreases at higher cycle frequencies. At high cycle frequencies, muscle stress is reduced by a decrease in the crossbridge duty cycle and an increase in the proportion of the muscle occupied by non-contractile elements such as sarcoplasmic reticulum and mitochondria. Muscles adapted to generate high powers, such as the pectoralis muscle of blue-breasted quail, exhibit: (i) intermediate contraction kinetics; (ii) a high relative myofibrillar volume; and (iii) a high maximum shortening velocity and a relatively flat force-velocity relationship. They are also characterised by (iv) operating at an intermediate cycle frequency; (v) utilisation of asymmetrical length trajectories, with a high proportion of the cycle spent shortening; and, finally, (vi) relatively large muscles. In part, the high power output of the blue-breasted quail pectoralis muscle can be attributed to its body size and the intermediate wing beat frequency required to generate aerodynamic force to support body mass, but in addition specialisations in the contractile and morphological properties of the muscle favour the generation of high stress at high strain rates.


Assuntos
Coturnix , Músculo Esquelético , Animais , Coturnix/fisiologia , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Retículo Sarcoplasmático , Fenômenos Biomecânicos
12.
J Exp Biol ; 226(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37655637

RESUMO

Cuttlefish swim using jet propulsion, taking a small volume of fluid into the mantle cavity before it is expelled through the siphon to generate thrust. Jet propulsion swimming has been shown to be more metabolically expensive than undulatory swimming, which has been suggested to be due to the lower efficiency of jet propulsion. The whole-cycle propulsive efficiency of cephalopod molluscs ranges from 38 to 76%, indicating that in some instances jet propulsion can be relatively efficient. Here, we determined the hydrodynamics of hatchling and juvenile cuttlefish during jet propulsion swimming to understand the characteristics of their jets, and whether their whole-cycle propulsive efficiency changes during development. Cuttlefish were found to utilise two jet types: isolated jet vortices (termed jet mode I) and elongated jets (leading edge vortex ring followed by a trailing jet; termed jet mode II). The use of these jet modes differed between the age classes, with newly hatched animals nearly exclusively utilising mode I jets, while juveniles showed no strong preferences. Whole-cycle propulsive efficiency was found to be high, ranging from 72 to 80%, and did not differ between age classes. During development, Strouhal number decreased as Reynolds number increased, which is consistent with animals adjusting their jetting behaviour in order to maximise whole-cycle propulsive efficiency and locomotor performance. Although jet propulsion swimming can have a relatively high energetic cost, in cuttlefish and nautilus, both neutrally buoyant species, the whole-cycle propulsive efficiency is actually relatively high.


Assuntos
Decapodiformes , Sepia , Animais , Natação , Hidrodinâmica , Fenômenos Biomecânicos
13.
Inorg Chem ; 62(44): 18003-18008, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37828836

RESUMO

A mixed-valence heterometallic nonanuclear [3 × 3] grid complex, [CuI2CuII6FeIII(L)6](BF4)5·MeOH·9H2O (1; MeOH = methanol), was synthesized by a one-pot reaction of copper and iron ions with multidentate ligand 2,6-bis[5-(2-pyridinyl)-1H-pyrazol-3-yl]pyridine (H2L). 1 showed five quasi-reversible one-electron redox processes centered at +0.74, +0.60, +0.39, +0.27, and -0.13 V versus SCE, assignable to four CuI/CuII processes and one FeII/FeIII couple, respectively. The two-electron-oxidized species [CuII8FeIII(L)6](PF6)7·4MeOH·7H2O (12eOx), the two-electron-reduced species [CuI4CuII4FeIII(L)6](PF6)3·2H2O (12eRed), and the three-electron-reduced species [CuI4CuII4FeII(L)6](PF6)2·5MeOH·H2O (13eRed) were isolated electrochemically. The four redox isomers were characterized by single-crystal X-ray analysis, SQUID magnetometry, and Mössbauer spectroscopy.

14.
Inorg Chem ; 62(8): 3585-3591, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763348

RESUMO

Organofunctionalization of polyoxometalates (POMs) allows the preparation of hybrid molecular systems with tunable electronic properties. Currently, there are only a handful of approaches that allow for the fine-tuning of POM frontier molecular orbitals in a predictable manner. Herein, we demonstrate a new functionalization method for the Wells-Dawson polyoxotungstate [P2W18O62]6- using arylarsonic acids which enables modulation of the redox and photochemical properties. Arylarsonic groups facilitate orbital mixing between the organic and inorganic moieties, and the nature of the organic substituents significantly impacts the redox potentials of the POM core. The photochemical response of the hybrid POMs correlates with their computed and experimentally estimated lowest unoccupied molecular orbital energies, and the arylarsonic hybrids are found to exhibit increased visible light photosensitivity comparable with that of arylphosphonic analogues. Arylarsonic hybridization offers a route to stable and tunable organic-inorganic hybrid systems for a range of redox and photochemical applications.

15.
Inorg Chem ; 62(6): 2637-2651, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36716427

RESUMO

Desferrioxamine (DFO) has long been considered the gold standard chelator for incorporating [89Zr]Zr4+ in radiopharmaceuticals for positron emission tomography (PET) imaging. To improve the stability of DFO with zirconium-89 and to expand its coordination sphere to enable binding of large therapeutic radiometals, we have synthesized the highest denticity DFO derivatives to date: dodecadentate DFO2 and DFO2p. In this study, we describe the synthesis and characterization of a novel DFO-based chelator, DFO2p, which is comprised of two DFO strands connected by an p-NO2-phenyl linker and therefore contains double the chelating moieties of DFO (potential coordination number up to 12 vs 6). The chelator DFO2p offers an optimized synthesis comprised of only a single reaction step and improves water solubility relative to DFO2, but the shorter linker reduces molecular flexibility. Both DFO2 and DFO2p, each with 6 potential hydroxamate ligands, are able to reach a more energetically favorable 8-coordinate environment for Zr(IV) than DFO. The zirconium(IV) coordination environment of these complexes were evaluated by a combination of density functional theory (DFT) calculations and synchrotron spectroscopy (extended X-ray absorption fine structure), which suggest the inner-coordination sphere of zirconium(IV) to be comprised of the outermost four hydroxamate ligands. These results also confirm a single Zr(IV) in each chelator, and the hydroxide ligands which complete the coordination sphere of Zr(IV)-DFO are absent from Zr(IV)-DFO2 and Zr(IV)-DFO2p. Radiochemical stability studies with zirconium-89 revealed the order of real-world stability to be DFO2 > DFO2p ≫ DFO. The zirconium-89 complexes of these new high-denticity chelators were found to be far more stable than DFO, and the decreased molecular flexibility of DFO2p, relative to DFO2, could explain its decreased stability, relative to DFO2.

16.
J Phys Chem A ; 127(16): 3692-3704, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-36912654

RESUMO

The sulfones are a widespread group of organo-sulfur compounds, which contain the sulfonyl SO2 group attached to two carbons and have a formal sulfur oxidation state of +2. We have examined the sulfur K near-edge X-ray absorption spectroscopy (XAS) of a range of different sulfones and find substantial spectroscopic variability depending upon the nature of the coordination to the sulfonyl group. We have also examined the sulfur Kß X-ray emission spectroscopy (XES) of selected representative sulfones. Density functional theory simulations show satisfactory reproduction of both absorption and emission spectra while enabling assignment of the various transitions comprising the spectra. The correspondence between observed and simulated spectra shows promise for ab initio prediction of sulfur X-ray absorption and emission spectra of sulfones of any substituent. The absorption spectra and, to a lesser extent, the emission spectra are sensitive to the nature of the organic groups bound to the sulfonyl (SO2) moiety, clearly showing the potential of X-ray spectroscopy as an in situ probe of sulfone chemistry.

17.
PLoS Genet ; 16(3): e1008679, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32119721

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1007533.].

18.
Chem Soc Rev ; 51(1): 293-328, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34889926

RESUMO

This review provides a comprehensive overview of recent advances in the supramolecular organisation and hierarchical self-assembly of organo-functionalised hybrid polyoxometalates (hereafter referred to as hybrid POMs), and their emerging role as multi-functional building blocks in the construction of new nanomaterials. Polyoxometalates have long been studied as a fascinating outgrowth of traditional metal-oxide chemistry, where the unusual position they occupy between individual metal oxoanions and solid-state bulk oxides imbues them with a range of attractive properties (e.g. solubility, high structural modularity and tuneable properties/reactivity). Specifically, the capacity for POMs to be covalently coupled to an effectively limitless range of organic moieties has opened exciting new avenues in their rational design, while the combination of distinct organic and inorganic components facilitates the formation of complex molecular architectures and the emergence of new, unique functionalities. Here, we present a detailed discussion of the design opportunities afforded by hybrid POMs, where fine control over their size, topology and their covalent and non-covalent interactions with a range of other species and/or substrates makes them ideal building blocks in the assembly of a broad range of supramolecular hybrid nanomaterials. We review both direct self-assembly approaches (encompassing both solution and solid-state approaches) and the non-covalent interactions of hybrid POMs with a range of suitable substrates (including cavitands, carbon nanotubes and biological systems), while giving key consideration to the underlying driving forces in each case. Ultimately, this review aims to demonstrate the enormous potential that the rational assembly of hybrid POM clusters shows for the development of next-generation nanomaterials with applications in areas as diverse as catalysis, energy-storage and molecular biology, while providing our perspective on where the next major developments in the field may emerge.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Ânions , Polieletrólitos
19.
J Ethn Subst Abuse ; 22(3): 589-605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34469277

RESUMO

Tribal Nations experience substance misuse at high rates often attributed to historical and contemporary traumas. In response, several Tribal Nations are addressing these issues through efforts to promote recovery and prevention to substance misuse. Study objectives were to partner with a Tribal Nation to develop a study to explore factors that contribute to the wellbeing of families to children with prenatal substance exposure and disseminate findings that can be translated back into the community. We applied Community-based participatory research (CBPR), strengths-based, and community-driven approaches during this two-year study development phase. We experienced challenges and identified solutions to partnering with one Tribal Nation on an epidemiological mixed-methods study centered on families with children that have prenatal substance exposure. Key inputs were becoming familiarizing with the community setting, structural supports for CBPR research, incorporating Indigenous CBPR principles, and developing a Community Advisory Team. We successfully collaborated with the Confederated Salish Kootenai Tribes Early Childhood Services program to develop a robust study design and a dissemination plan to ensure translation of study findings to the community. The robust study design consisted of common themes specific to a highly stigmatized study population, substance-abusing pregnant women, to protect participant confidentiality. Research alignment with community goals, allotting meaningful time to develop a research partnership, and incorporating culturally sensitive and community-relevant measures contributed to the successful development of an effective and rigorous study to better serve the Tribal Nation on addressing substance misuse.

20.
Angew Chem Int Ed Engl ; 62(23): e202302446, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36988545

RESUMO

Herein, we report the synthesis and characterization of a new class of hybrid Wells-Dawson polyoxometalate (POM) containing a diphosphoryl group (P2 O6 X) of the general formula [P2 W17 O57 (P2 O6 X)]6- (X=O, NH, or CR1 R2 ). Modifying the bridging unit X was found to impact the redox potentials of the POM. The ease with which a range of α-functionalized diphosphonic acids (X=CR1 R2 ) can be prepared provides possibilities to access diverse functionalized hybrid POMs. Compared to existing phosphonate hybrid Wells-Dawson POMs, diphosphoryl-substituted POMs offer a wider tunable redox window and enhanced hydrolytic stability. This study provides a basis for the rational design and synthesis of next-generation hybrid Wells-Dawson POMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA