Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(1): e22710, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520045

RESUMO

Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and apoptotic retinal ganglion cell (RGC) death, and is the leading cause of irreversible blindness worldwide. Among the sphingosine 1-phosphate receptors (S1PRs) family, S1PR1 is a highly expressed subtype in the central nervous system and has gained rapid attention as an important mediator of pathophysiological processes in the brain and the retina. Our recent study showed that mice treated orally with siponimod drug exerted neuroprotection via modulation of neuronal S1PR1 in experimental glaucoma. This study identified the molecular signaling pathway modulated by S1PR1 activation with siponimod treatment in RGCs in glaucomatous injury. We investigated the critical neuroprotective signaling pathway in vivo using mice deleted for S1PR1 in RGCs. Our results showed marked upregulation of the apoptotic pathway was associated with decreased Akt and Erk1/2 activation levels in the retina in glaucoma conditions. Activation of S1PR1 with siponimod treatment significantly increased neuroprotective Akt and Erk1/2 activation and attenuated the apoptotic signaling via suppression of c-Jun/Bim cascade and by increasing Bad phosphorylation. Conversely, deletion of S1PR1 in RGCs significantly increased the apoptotic cells in the ganglion cell layer in glaucoma and diminished the neuroprotective effects of siponimod treatment on Akt/Erk1/2 activation, c-Jun/Bim cascade, and Bad phosphorylation. Our data demonstrated that activation of S1PR1 in RGCs induces crucial neuroprotective signaling that suppresses the proapoptotic c-Jun/Bim cascade and increases antiapoptotic Bad phosphorylation. Our findings suggest that S1PR1 is a potential therapeutic target for neuroprotection of RGCs in glaucoma.


Assuntos
Glaucoma , Células Ganglionares da Retina , Animais , Camundongos , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/fisiologia , Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Glaucoma/genética , Glaucoma/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Transdução de Sinais/fisiologia , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
2.
Mol Ther ; 31(7): 2056-2076, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36905120

RESUMO

Our research has proven that the inhibitory activity of the serine protease inhibitor neuroserpin (NS) is impaired because of its oxidation deactivation in glaucoma. Using genetic NS knockout (NS-/-) and NS overexpression (NS+/+ Tg) animal models and antibody-based neutralization approaches, we demonstrate that NS loss is detrimental to retinal structure and function. NS ablation was associated with perturbations in autophagy and microglial and synaptic markers, leading to significantly enhanced IBA1, PSD95, beclin-1, and LC3-II/LC3-I ratio and reduced phosphorylated neurofilament heavy chain (pNFH) levels. On the other hand, NS upregulation promoted retinal ganglion cell (RGC) survival in wild-type and NS-/- glaucomatous mice and increased pNFH expression. NS+/+Tg mice demonstrated decreased PSD95, beclin-1, LC3-II/LC3-I ratio, and IBA1 following glaucoma induction, highlighting its protective role. We generated a novel reactive site NS variant (M363R-NS) resistant to oxidative deactivation. Intravitreal administration of M363R-NS was observed to rescue the RGC degenerative phenotype in NS-/- mice. These findings demonstrate that NS dysfunction plays a key role in the glaucoma inner retinal degenerative phenotype and that modulating NS imparts significant protection to the retina. NS upregulation protected RGC function and restored biochemical networks associated with autophagy and microglial and synaptic function in glaucoma.


Assuntos
Glaucoma , Células Ganglionares da Retina , Camundongos , Animais , Células Ganglionares da Retina/metabolismo , Proteína Beclina-1/metabolismo , Modelos Animais de Doenças , Glaucoma/genética , Glaucoma/terapia , Glaucoma/metabolismo , Apoptose/genética , Pressão Intraocular , Neuroserpina
3.
Ophthalmology ; 130(8): 830-836, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37044160

RESUMO

PURPOSE: To assess the association between a glaucoma polygenic risk score (PRS) and treatment outcomes in primary open-angle glaucoma. DESIGN: Prospective, observational cohort study. PARTICIPANTS: Participants from the Progression Risk of Glaucoma: Relevant SNPs with Significant Association Study were divided into a cohort with suspect glaucoma who were treatment naive at enrollment and one with early manifest and suspect glaucoma receiving treatment at enrollment. METHODS: A per-allele weighted glaucoma PRS was calculated for 1107 participants. Multivariable mixed-effects Cox proportional regression analysis assessed the association between PRS and time to commencement of intraocular pressure (IOP)-lowering therapy in 416 patients with suspect glaucoma who were treatment naive at study enrollment. Secondary analysis evaluated the association between PRS and escalation of IOP-lowering therapy among 691 patients with suspect and early manifest glaucoma who were receiving IOP-lowering therapy at enrollment. MAIN OUTCOME MEASURES: Commencement or escalation of IOP-lowering therapy. RESULTS: A higher PRS was associated with a greater risk of commencing IOP-lowering therapy within 5 years (hazard ratio [HR], 1.45 per 1 standard deviation [/SD]; 95% confidence interval [CI], 1.27-1.62; P < 0.001). Participants in the upper population-based quintile showed a 3.3 times greater risk of commencing therapy by 5 years than those in the lowest quintile (HR, 3.30; 95% CI, 1.63-6,70; P < 0.001) and a 5.4 times greater risk of commencing IOP-lowering therapy by 2 years than the those in the lowest quintile (HR, 5.45; 95% CI, 2.08-14.25; P < 0.001). A higher PRS was associated with a greater risk of treatment escalation among patients receiving treatment at enrollment (HR, 1.19/SD; 95% CI, 1.09-1.31; P < 0.001). In combined analysis of all participants, participants in the top population-based quintile were at 2.3 times greater risk of requiring initiation or escalation of IOP-lowering therapy than those in the lowest quintile (HR, 2.33; 95% CI, 1.75-3.01; P < 0.001). CONCLUSIONS: This study demonstrated novel associations between glaucoma polygenic risk and risk of commencement or escalation of IOP-lowering therapy, building on previous work highlighting the potential clinical usefulness of genetic risk stratification in glaucoma. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Hipertensão Ocular , Humanos , Glaucoma de Ângulo Aberto/tratamento farmacológico , Glaucoma de Ângulo Aberto/genética , Estudos Prospectivos , Pressão Intraocular , Hipertensão Ocular/tratamento farmacológico
4.
Acta Neuropathol ; 145(4): 409-438, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773106

RESUMO

Alzheimer's disease (AD) pathologies were discovered in the accessible neurosensory retina. However, their exact nature and topographical distribution, particularly in the early stages of functional impairment, and how they relate to disease progression in the brain remain largely unknown. To better understand the pathological features of AD in the retina, we conducted an extensive histopathological and biochemical investigation of postmortem retina and brain tissues from 86 human donors. Quantitative examination of superior and inferior temporal retinas from mild cognitive impairment (MCI) and AD patients compared to those with normal cognition (NC) revealed significant increases in amyloid ß-protein (Aß42) forms and novel intraneuronal Aß oligomers (AßOi), which were closely associated with exacerbated retinal macrogliosis, microgliosis, and tissue atrophy. These pathologies were unevenly distributed across retinal layers and geometrical areas, with the inner layers and peripheral subregions exhibiting most pronounced accumulations in the MCI and AD versus NC retinas. While microgliosis was increased in the retina of these patients, the proportion of microglial cells engaging in Aß uptake was reduced. Female AD patients exhibited higher levels of retinal microgliosis than males. Notably, retinal Aß42, S100 calcium-binding protein B+ macrogliosis, and atrophy correlated with severity of brain Aß pathology, tauopathy, and atrophy, and most retinal pathologies reflected Braak staging. All retinal biomarkers correlated with the cognitive scores, with retinal Aß42, far-peripheral AßOi and microgliosis displaying the strongest correlations. Proteomic analysis of AD retinas revealed activation of specific inflammatory and neurodegenerative processes and inhibition of oxidative phosphorylation/mitochondrial, and photoreceptor-related pathways. This study identifies and maps retinopathy in MCI and AD patients, demonstrating the quantitative relationship with brain pathology and cognition, and may lead to reliable retinal biomarkers for noninvasive retinal screening and monitoring of AD.


Assuntos
Doença de Alzheimer , Masculino , Humanos , Feminino , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Proteoma/metabolismo , Proteômica , Retina/patologia , Atrofia/patologia , Biomarcadores/metabolismo
5.
Alzheimers Dement ; 19(11): 5185-5197, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37166032

RESUMO

INTRODUCTION: Vascular amyloid beta (Aß) protein deposits were detected in retinas of mild cognitively impaired (MCI) and Alzheimer's disease (AD) patients. We tested the hypothesis that the retinal vascular tight junctions (TJs) were compromised and linked to disease status. METHODS: TJ components and Aß expression in capillaries and larger blood vessels were determined in post mortem retinas from 34 MCI or AD patients and 27 cognitively normal controls and correlated with neuropathology. RESULTS: Severe decreases in retinal vascular zonula occludens-1 (ZO-1) and claudin-5 correlating with abundant arteriolar Aß40 deposition were identified in MCI and AD patients. Retinal claudin-5 deficiency was closely associated with cerebral amyloid angiopathy, whereas ZO-1 defects correlated with cerebral pathology and cognitive deficits. DISCUSSION: We uncovered deficiencies in blood-retinal barrier markers for potential retinal imaging targets of AD screening and monitoring. Intense retinal arteriolar Aß40 deposition suggests a common pathogenic mechanism of failed Aß clearance via intramural periarterial drainage.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Retina , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Angiopatia Amiloide Cerebral/patologia , Claudina-5/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Retina/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia
6.
Proteomics ; 22(19-20): e2100247, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866514

RESUMO

Fingolimod (FTY720) is an oral drug approved by the Food and Drug Administration (FDA) for management of multiple sclerosis (MS) symptoms, which has also shown beneficial effects against Alzheimer's (AD) and Parkinson's (PD) diseases pathologies. Although an extensive effort has been made to identify mechanisms underpinning its therapeutic effects, much remains unknown. Here, we investigated Fingolimod induced proteome changes in the cerebellum (CB) and frontal cortex (FC) regions of the brain which are known to be severely affected in MS, using a tandem mass tag (TMT) isobaric labeling-based quantitative mass-spectrometric approach to investigate the mechanism of action of Fingolimod. This study identified 6749 and 6319 proteins in CB and FC, respectively, and returned 2609 and 3086 differentially expressed proteins in mouse CB and FC, respectively, between Fingolimod treated and control groups. Subsequent bioinformatics analyses indicated a metabolic reprogramming in both brain regions of the Fingolimod treated group, where oxidative phosphorylation was upregulated while glycolysis and pentose phosphate pathway were downregulated. In addition, modulation of neuroinflammation in the Fingolimod treated group was indicated by upregulation of retrograde endocannabinoid signaling and autophagy pathways, and downregulation of neuroinflammation related pathways including neutrophil degranulation and the IL-12 mediated signaling pathway. Our findings suggest that Fingolimod may exert its protective effects on the brain by inducing metabolic reprogramming and neuroinflammation pathway modulation.


Assuntos
Cloridrato de Fingolimode , Esclerose Múltipla , Animais , Camundongos , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/metabolismo , Cloridrato de Fingolimode/uso terapêutico , Proteoma/metabolismo , Endocanabinoides/metabolismo , Encéfalo/metabolismo , Esclerose Múltipla/metabolismo , Metabolismo Energético , Autofagia , Interleucina-12/metabolismo
7.
Mult Scler ; 28(10): 1504-1514, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35296170

RESUMO

BACKGROUND AND OBJECTIVES: Expansion of chronic lesions in multiple sclerosis (MS) patients and recently described cerebrospinal fluid (CSF)-related gradient of tissue damage are linked to microglial activation. The aim of this study was to investigate whether lesion expansion is associated with proximity to ventricular CSF spaces. METHODS: Pre- and post-gadolinium three-dimensional (3D)-T1, 3D FLAIR and diffusion tensor images were acquired from 36 relapsing-remitting MS (RRMS) patients. Lesional activity was analysed between baseline and 48 months at different distances from the CSF using successive 1 mm thick concentric bands radiating from the ventricles. RESULTS: Voxel-based analysis of the rate of lesion expansion demonstrated a clear periventricular gradient decreasing away from the ventricles. This was particularly apparent when lesions of equal diameter were analysed. Periventricular lesional tissue showed higher degree of tissue destruction at baseline that significantly increased during follow-up in bands close to CSF. This longitudinal change was proportional to degree of lesion expansion. Lesion-wise analysis revealed a gradual, centrifugal decrease in the proportion of expanding lesions from the immediate periventricular zone. DISCUSSION: Our data suggest that chronic white matter lesions in close proximity to the ventricles are more destructive, show a higher degree of expansion at the lesion border and accelerated tissue loss in the lesion core.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia
8.
Mult Scler ; 28(5): 697-706, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34378454

RESUMO

BACKGROUND: Expansion of chronic multiple sclerosis (MS) lesion is associated with slow-burning inflammation at lesion rim. However, the underlying mechanisms leading to expansion are not fully understood. OBJECTIVE: To investigate the relationship between diffusivity markers of demyelination and axonal loss in perilesional white matter and lesion expansion in relapsing-remitting MS (RRMS). METHODS: T1, FLAIR and diffusion tensor images were acquired from 30 patients. Novel single-streamline technique was used to estimate diffusivity in lesions, perilesional white matter and normal-appearing white matter (NAWM). RESULTS: Significant association was found between baseline periplaque radial diffusivity (RD) and subsequent lesion expansion. Conversely, periplaque axial diffusivity (AD) did not correlate with lesion growth. Baseline RD (but not AD) in periplaque white matter of expanding lesions was significantly higher compared with non-expanding lesions. Correlation between increase of both RD and AD in the periplaque area during follow-up period and lesion expansion was noticeably stronger for RD. Increase of RD in periplaque area was also much higher compared to AD. There was significant increase of AD and RD in the periplaque area of expanding, but not in non-expanding, lesions. CONCLUSION: Periplaque demyelination is likely to be an initial step in a process of lesion expansion and, as such, potentially represents a suitable target for remyelinating therapies.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Substância Branca , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Humanos , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
9.
Proteomics ; 21(7-8): e2000213, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33559908

RESUMO

Different parts of the brain are affected distinctively in various stages of the Alzheimer's disease (AD) pathogenesis. Identifying the biochemical changes in specific brain regions is key to comprehend the neuropathological mechanisms in early pre-symptomatic phases of AD. Quantitative proteomics profiling of four distinct areas of the brain of young APP/PS1 mouse model of AD was performed followed by biochemical pathway enrichment analysis. Findings revealed fundamental compositional and functional shifts even in the early stages of the disease. This novel study highlights unique proteome and biochemical pathway alterations in specific regions of the brain that underlie the early stages of AD pathology and will provide a framework for future longitudinal studies. The proteomics data were deposited into the ProteomeXchange Consortium via PRIDE with the identifier PXD019192.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteoma/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos , Presenilina-1/genética
10.
Expert Rev Proteomics ; 18(4): 295-304, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33874826

RESUMO

Mitochondrial dysfunction is involved in Alzheimer's disease (AD) pathogenesis. Mitochondria have their own genetic material; however, most of their proteins (∼99%) are synthesized as precursors on cytosolic ribosomes, and then imported into the mitochondria. Therefore, exploring proteome changes in these organelles can yield valuable information and shed light on the molecular mechanisms underlying mitochondrial dysfunction in AD. Here, we review AD-associated mitochondrial changes including the effects of amyloid beta and tau protein accumulation on the mitochondrial proteome. We also discuss the relationship of ApoE genetic polymorphism with mitochondrial changes, and present a meta-analysis of various differentially expressed proteins in the mitochondria in AD.Area covered: Proteomics studies and their contribution to our understanding of mitochondrial dysfunction in AD pathogenesis.Expert opinion: Proteomics has proven to be an efficient tool to uncover various aspects of this complex organelle, which will broaden our understanding of mitochondrial dysfunction in AD. Evidently, mitochondrial dysfunction is an early biochemical event that might play a central role in driving AD pathogenesis.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Humanos , Mitocôndrias , Proteoma , Proteômica
11.
Ophthalmology ; 128(7): 993-1004, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33245936

RESUMO

PURPOSE: To investigate corneal stiffness parameters (SPs) as predictors of future progression risk in glaucoma suspect eyes. DESIGN: Prospective, longitudinal study. PARTICIPANTS: Three hundred seventy-one eyes from 228 primary open-angle glaucoma suspects, based on optic disc appearance, with normal baseline Humphrey Visual Field (HVF; Carl Zeiss Meditec) results. METHODS: Baseline corneal SPs were measured using Corvis ST (Oculus Optikgeräte GmbH). Participants were followed up every 6 months with clinical examination, HVF testing, and OCT. The baseline SP at first applanation (SP-A1) and highest concavity predicted the prospective outcome measures. MAIN OUTCOME MEASURES: Structural progression was measured by the OCT rate of thinning of the retinal nerve fiber layer (RNFL) and ganglion cell-inner plexiform layer (GCIPL). Functional progression was assessed by permutation analysis of pointwise linear regression criteria on HVF testing. RESULTS: Stiffness parameters correlated positively with central corneal thickness (CCT), which was adjusted for in all analyses. A higher SP-A1, suggestive of a stiffer cornea, was associated with a faster rate of RNFL thinning (P < 0.001), synergistic with thinner CCT (P = 0.004) over a mean follow-up of 4.2 years. Eyes with higher SP-A1 and thinner CCT (thin and stiff corneas) showed accelerated RNFL thinning by 0.72 µm/year relative to eyes with lower SP-A1 and thicker CCT (95% confidence interval [CI], 0.17-1.28; P = 0.011) and were at 2.9-fold higher likelihood of fast RNFL progression of more than 1 µm/year (95% CI, 1.4-6.1; P = 0.006). Consistent results also were observed with GCIPL thinning. Furthermore, a higher SP-A1 was associated with a greater risk of visual field progression (P = 0.002), synergistic with thinner CCT (P = 0.010). Eyes with higher SP-A1 and thinner CCT were at 3.7-fold greater risk of visual field progression relative to eyes with thicker CCT and lower SP-A1 (95% CI, 1.3-10.5; P = 0.014). CONCLUSIONS: Glaucoma suspect eyes with higher corneal SPs and lower CCT, suggestive of thin and stiff corneas, are at greater risk of progression. Corneal SPs seem to act synergistically with CCT as risk factors for glaucoma progression.


Assuntos
Córnea/fisiopatologia , Glaucoma de Ângulo Aberto/fisiopatologia , Pressão Intraocular/fisiologia , Tomografia de Coerência Óptica/métodos , Córnea/diagnóstico por imagem , Progressão da Doença , Elasticidade , Feminino , Seguimentos , Glaucoma de Ângulo Aberto/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Campos Visuais/fisiologia
12.
Ophthalmology ; 128(1): 58-69, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32730956

RESUMO

PURPOSE: To investigate the association between cardiovascular disease and baseline structural defects and disease progression in glaucoma. DESIGN: Prospective, longitudinal study of preperimetric and perimetric glaucoma. PARTICIPANTS: Two thousand six hundred twenty-eight eyes from 1314 participants recruited to the Progression Risk of Glaucoma: Relevant SNPs with Significant Association (PROGRESSA) study were evaluated for baseline and longitudinal structural thinning using spectral-domain OCT and for visual field progression on Humphrey visual field (HVF) assessment. METHODS: Patients were classified as either predominantly macula ganglion cell-inner plexiform layer (mGCIPL), predominantly peripapillary retinal nerve fiber layer (pRNFL), or both mGCIPL and pRNFL structural change at enrollment, and then evaluated for longitudinal OCT or HVF progression. Cardiovascular disease and medication characteristics of the participants were compared with a reference group of stable patients. MAIN OUTCOME MEASURES: OCT and HVF baseline status and longitudinal progression. RESULTS: After accounting for age and cardiovascular characteristics, patients with predominantly mGCIPL thinning at baseline showed a higher prevalence of hypertension (odds ratio [OR], 2.70; 95% confidence interval [CI], 1.66-4.41; P < 0.001), antihypertensive use (OR, 2.03; 95% CI, 1.20-3.46; P = 0.008), and statin use (OR, 1.98; 95% CI, 1.07-3.66; P = 0.029) than reference patients. Patients with predominantly pRNFL thinning exhibited a comparable prevalence of cardiovascular disease or medication with reference patients. Review of longitudinal OCT and HVF data (mean follow-up, 5.34 ± 1.29 years) showed that hypertension was associated with an increased risk of both OCT (OR, 1.79; 95% CI, 1.17-2.75; P = 0.006) and HVF progression (OR, 1.92; 95% CI, 1.18-3.15; P = 0.013). A 1-standard deviation (approximately 21 mmHg) increase in systolic blood pressure at baseline was associated with a greater risk of OCT progression (OR, 1.27; 95% CI, 1.01-1.63; P = 0.041) and HVF progression (OR, 1.32; 95% CI, 1.01-1.73; P = 0.043). The association between systolic blood pressure and structural progression was comparable to that observed between intraocular pressure and structural progression (OR, 1.30; 95% CI, 1.01-1.67; P = 0.039). CONCLUSIONS: Cardiovascular disease is an important risk factor for glaucoma progression.


Assuntos
Doenças Cardiovasculares/complicações , Glaucoma/diagnóstico , Pressão Intraocular/fisiologia , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica/métodos , Acuidade Visual , Idoso , Progressão da Doença , Feminino , Seguimentos , Glaucoma/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Disco Óptico/patologia , Prognóstico , Estudos Prospectivos , Fatores de Tempo
13.
Mult Scler ; 27(10): 1533-1542, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33215557

RESUMO

BACKGROUND: Slow-burning inflammation is putatively associated with lesion expansion and leads to progressive loss of axons and disability worsening. OBJECTIVE: To investigate the incidence and extent of chronic white matter lesion expansion in relapsing-remitting multiple sclerosis (RRMS) patients and to evaluate its relationship with biomarkers of disease progression. METHODS: Pre- and post-gadolinium T1, fluid-attenuated inversion recovery (FLAIR) and diffusion tensor images were acquired from 33 patients. Lesional activity were analysed between baseline and 48 months using custom-designed software. RESULTS: A total of 569 lesions were identified as chronic at baseline, of which 261 were expanding, 236 were stable and 72 were shrinking. In addition, 139 new lesions (both confluent and free-standing) were observed. Chronic lesion expansion was associated with patient's age and accounted for the bulk (67.3%) of total brain lesion volume increase, while only 32.7% was attributable to new lesion formation. Change in chronic lesion volume correlated with the rate of brain atrophy (r = -0.57, p = 0.001), change of Expanded Disability Status Scale (EDSS; r = 0.38, p = 0.03) and an increase of isotropic diffusivity inside the lesions (r = 0.75, p < 0.001). CONCLUSION: Expansion of chronic lesions in RRMS patients is the primary determinant of increased T2 total lesion load. It significantly contributes to disease progression and partially driving axonal loss inside the lesions and brain damage outside of lesional tissue.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Encéfalo/diagnóstico por imagem , Progressão da Doença , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem
14.
J Cell Biochem ; 121(12): 4931-4944, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32692886

RESUMO

Current evidence suggests that exposure to chronically induced intraocular pressure (IOP) leads to neurodegenerative changes in the inner retina. This study aimed to determine retinal proteomic alterations in a rat model of glaucoma and compared findings with human retinal proteomics changes in glaucoma reported previously. We developed an experimental glaucoma rat model by subjecting the rats to increased IOP (9.3 ± 0.1 vs 20.8 ± 1.6 mm Hg) by weekly microbead injections into the eye (8 weeks). The retinal tissues were harvested from control and glaucomatous eyes and protein expression changes analysed using a multiplexed quantitative proteomics approach (TMT-MS3). Immunofluorescence was performed for selected protein markers for data validation. Our study identified 4304 proteins in the rat retinas. Out of these, 139 proteins were downregulated (≤0.83) while the expression of 109 proteins was upregulated (≥1.2-fold change) under glaucoma conditions (P ≤ .05). Computational analysis revealed reduced expression of proteins associated with glutathione metabolism, mitochondrial dysfunction/oxidative phosphorylation, cytoskeleton, and actin filament organisation, along with increased expression of proteins in coagulation cascade, apoptosis, oxidative stress, and RNA processing. Further functional network analysis highlighted the differential modulation of nuclear receptor signalling, cellular survival, protein synthesis, transport, and cellular assembly pathways. Alterations in crystallin family, glutathione metabolism, and mitochondrial dysfunction associated proteins shared similarities between the animal model of glaucoma and the human disease condition. In contrast, the activation of the classical complement pathway and upregulation of cholesterol transport proteins were exclusive to human glaucoma. These findings provide insights into the neurodegenerative mechanisms that are specifically affected in the retina in response to chronically elevated IOP.

15.
J Transl Med ; 18(1): 278, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32646487

RESUMO

BACKGROUND: Severe acute respiratory syndrome (SARS) has been initiating pandemics since the beginning of the century. In December 2019, the world was hit again by a devastating SARS episode that has so far infected almost four million individuals worldwide, with over 200,000 fatalities having already occurred by mid-April 2020, and the infection rate continues to grow exponentially. SARS coronavirus 2 (SARS-CoV-2) is a single stranded RNA pathogen which is characterised by a high mutation rate. It is vital to explore the mutagenic capability of the viral genome that enables SARS-CoV-2 to rapidly jump from one host immunity to another and adapt to the genetic pool of local populations. METHODS: For this study, we analysed 2301 complete viral sequences reported from SARS-CoV-2 infected patients. SARS-CoV-2 host genomes were collected from The Global Initiative on Sharing All Influenza Data (GISAID) database containing 9 genomes from pangolin-CoV origin and 3 genomes from bat-CoV origin, Wuhan SARS-CoV2 reference genome was collected from GeneBank database. The Multiple sequence alignment tool, Clustal Omega was used for genomic sequence alignment. The viral replicating enzyme, 3-chymotrypsin-like cysteine protease (3CLpro) that plays a key role in its pathogenicity was used to assess its affinity with pharmacological inhibitors and repurposed drugs such as anti-viral flavones, biflavanoids, anti-malarial drugs and vitamin supplements. RESULTS: Our results demonstrate that bat-CoV shares > 96% similar identity, while pangolin-CoV shares 85.98% identity with Wuhan SARS-CoV-2 genome. This in-depth analysis has identified 12 novel recurrent mutations in South American and African viral genomes out of which 3 were unique in South America, 4 unique in Africa and 5 were present in-patient isolates from both populations. Using state of the art in silico approaches, this study further investigates the interaction of repurposed drugs with the SARS-CoV-2 3CLpro enzyme, which regulates viral replication machinery. CONCLUSIONS: Overall, this study provides insights into the evolving mutations, with implications to understand viral pathogenicity and possible new strategies for repurposing compounds to combat the nCovid-19 pandemic.


Assuntos
Betacoronavirus/enzimologia , Simulação por Computador , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/metabolismo , Replicação do DNA , Reposicionamento de Medicamentos , Geografia , Pneumonia Viral/virologia , Proteínas não Estruturais Virais/metabolismo , Betacoronavirus/genética , COVID-19 , Proteases 3C de Coronavírus , Evolução Molecular , Genoma Viral , Humanos , Simulação de Acoplamento Molecular , Mutação/genética , Taxa de Mutação , Pandemias , Filogenia , SARS-CoV-2 , Montagem de Vírus
16.
Ophthalmology ; 127(7): 901-907, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32081492

RESUMO

PURPOSE: To examine the combined effects of common genetic variants associated with intraocular pressure (IOP) on primary open-angle glaucoma (POAG) phenotype using a polygenic risk score (PRS) stratification. DESIGN: Cross-sectional study. PARTICIPANTS: For the primary analysis, we examined the glaucoma phenotype of 2154 POAG patients enrolled in the Australian and New Zealand Registry of Advanced Glaucoma, including patients recruited from the United Kingdom. For replication, we examined an independent cohort of 624 early POAG patients. METHODS: Using IOP genome-wide association study summary statistics, we developed a PRS derived solely from IOP-associated variants and stratified POAG patients into 3 risk tiers. The lowest and highest quintiles of the score were set as the low- and high-risk groups, respectively, and the other quintiles were set as the intermediate risk group. MAIN OUTCOME MEASURES: Clinical glaucoma phenotype including maximum recorded IOP, age at diagnosis, number of family members affected by glaucoma, cup-to-disc ratio, visual field mean deviation, and treatment intensity. RESULTS: A dose-response relationship was found between the IOP PRS and the maximum recorded IOP, with the high genetic risk group having a higher maximum IOP by 1.7 mmHg (standard deviation [SD], 0.62 mmHg) than the low genetic risk group (P = 0.006). Compared with the low genetic risk group, the high genetic risk group had a younger age of diagnosis by 3.7 years (SD, 1.0 years; P < 0.001), more family members affected by 0.46 members (SD, 0.11 members; P < 0.001), and higher rates of incisional surgery (odds ratio, 1.5; 95% confidence interval, 1.1-2.0; P = 0.007). No statistically significant difference was found in mean deviation. We further replicated the maximum IOP, number of family members affected by glaucoma, and treatment intensity (number of medications) results in the early POAG cohort (P ≤ 0.01). CONCLUSIONS: The IOP PRS was correlated positively with maximum IOP, disease severity, need for surgery, and number of affected family members. Genes acting via IOP-mediated pathways, when considered in aggregate, have clinically important and reproducible implications for glaucoma patients and their close family members.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Glaucoma de Ângulo Aberto/fisiopatologia , Pressão Intraocular/fisiologia , Acuidade Visual , Estudos Transversais , Feminino , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Fatores de Risco , Campos Visuais/fisiologia
17.
Brain ; 142(2): 426-442, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668642

RESUMO

The spread of neurodegeneration through the human brain network is reported as underlying the progression of neurodegenerative disorders. However, the exact mechanisms remain unknown. The human visual pathway is characterized by its unique hierarchical architecture and, therefore, represents an ideal model to study trans-synaptic degeneration, in contrast to the complexity in neural connectivity of the whole brain. Here we show in two specifically selected patient cohorts, including (i) glaucoma patients with symmetrical bilateral hemifield defects respecting the horizontal meridian (n = 25, 14 females, 64.8 ± 10.1 years; versus 13 normal controls with similar age/sex distributions); and (ii) multiple sclerosis patients without optic radiation lesions (to avoid potential effects of lesions on diffusivity measures) (n = 30, 25 females, 37.9 ± 10.8 years; versus 20 controls), that there are measurable topographic changes in the posterior visual pathways corresponding to the primary optic nerve defects. A significant anisotropic increase of water diffusion was detected in both patient cohorts in the optic radiations, characterized by changes in perpendicular (radial) diffusivity (a measure of myelin integrity) that extended more posteriorly than those observed in parallel (axial) diffusivity (reflecting axonal integrity). In glaucoma, which is not considered a demyelinating disease, the observed increase in radial diffusivity within the optic radiations was validated by topographically linked delay of visual evoked potential latency, a functional measure of demyelination. Radial diffusivity change in the optic radiations was also associated with an asymmetrical reduction in the thickness of the calcarine cortex in glaucoma. In addition, 3 years longitudinal observation of the multiple sclerosis patient cohort revealed an anterograde increase of radial diffusivity in the anterior part of optic radiations which again was retinotopically associated with the primary damage caused by optic neuritis. Finally, in an animal model of optic nerve injury, we observed early glial activation and demyelination in the posterior visual projections, evidenced by the presence of myelin-laden macrophages. This occurred prior to the appearance of amyloid precursor protein accumulation, an indicator of disrupted fast axonal transport. This study demonstrated strong topographical spread of neurodegeneration along recognized neural projections and showed that myelin and glial pathology precedes axonal loss in the process, suggesting that the mechanism of trans-synaptic damage may be at least partially mediated by glial components at the cellular level. The findings may have broad biological and therapeutic implications for other neurodegenerative disorders.


Assuntos
Axônios/patologia , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Neurodegenerativas/diagnóstico por imagem , Neurônios/patologia , Adulto , Idoso , Animais , Axônios/fisiologia , Estudos de Coortes , Doenças Desmielinizantes/fisiopatologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Doenças Neurodegenerativas/fisiopatologia , Neurônios/fisiologia
18.
Mol Ther ; 27(2): 424-441, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30341011

RESUMO

Glaucoma is characterized by the loss of retinal ganglion cells (RGC), and accordingly the preservation of RGCs and their axons has recently attracted significant attention to improve therapeutic outcomes in the disease. Here, we report that Src homology region 2-containing protein tyrosine phosphatase 2 (Shp2) undergoes activation in the RGCs, in animal model of glaucoma as well as in the human glaucoma tissues and that Shp2 dephosphorylates tropomyosin receptor kinase B (TrkB) receptor, leading to reduced BDNF/TrkB neuroprotective survival signaling. This was elucidated by specifically modulating Shp2 expression in the RGCs in vivo, using adeno-associated virus serotype 2 (AAV2) constructs. Shp2 upregulation promoted endoplasmic reticulum (ER) stress and apoptosis, along with functional and structural deficits in the inner retina. In contrast, loss of Shp2 decelerated the loss of RGCs, preserved their function, and suppressed ER stress and apoptosis in glaucoma. This report constitutes the first identification of Shp2-mediated TrkB regulatory mechanisms in the RGCs that can become a potential therapeutic target in both glaucoma and other neurodegenerative disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Receptor trkB/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/genética , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Eletrorretinografia , Glaucoma/metabolismo , Glaucoma/patologia , Masculino , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Ratos , Ratos Sprague-Dawley , Receptor trkB/genética , Retina/citologia , Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
19.
Clin Exp Ophthalmol ; 48(4): 442-449, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32031310

RESUMO

IMPORTANCE: Cataract and primary open-angle glaucoma (POAG) commonly co-exist, and cataract surgery is thought to reduce intraocular pressure (IOP), the major modifiable risk factor of POAG. BACKGROUND: Previous studies exploring the effect of cataract surgery on IOP are limited by retrospective design, lack of a control group, medication use and washout and loss to follow up. DESIGN: Prospective, multicentre, matched case-control Australian study. PARTICIPANTS: 171 eyes of 108 POAG patients who underwent cataract surgery, matched to 171 control eyes. METHODS: Serial longitudinal IOP measurements were compared before and after cataract surgery, and relative to the controls. A mixed-effect model was used for the longitudinal data. MAIN OUTCOME MEASURES: Change in IOP. RESULTS: The mean follow-up time was 4.8 (1.4) years. Cataract surgery reduced mean IOP by 2.22 mmHg (95% confidence interval: 1.93-2.52 mmHg, P < .001) with 59 eyes (34%) achieving at least 3 mmHg reduction. Compared to matched controls, the mean reduction in IOP was 1.75 mmHg (95% confidence interval 1.15-2.33 mmHg; P < .001). Higher preoperative IOP and being on fewer topical glaucoma medications preoperatively were strongly predictive of a larger IOP reduction in a multivariable model. Anterior chamber depth was not associated with IOP reduction. Eyes with preoperative IOP ≥24 mmHg had a mean IOP reduction of 4.03 mmHg with 81% experiencing at least 3 mmHg reduction. Sub-analysis of medication naïve and pseudoexfoliation patients showed similar results. CONCLUSIONS AND RELEVANCE: Cataract surgery has a confirmed effect in reducing IOP in a "real world" setting of early glaucoma patients.


Assuntos
Catarata , Glaucoma de Ângulo Aberto , Glaucoma , Facoemulsificação , Austrália , Catarata/complicações , Glaucoma de Ângulo Aberto/cirurgia , Humanos , Pressão Intraocular , Estudos Prospectivos , Estudos Retrospectivos
20.
J Cell Biochem ; 120(7): 11745-11760, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30746761

RESUMO

Retinoid X receptors (RXRs) belong to the nuclear receptor superfamily, and upon ligand activation, these receptors control gene transcription via either homodimerization with themselves or heterodimerization with the partner-nuclear receptor. The protective effects of RXRs and RXR agonists have been reported in several neurodegenerative diseases, including in the retina. This study was aimed to prioritize compounds from natural and synthetic origin retinoids as potential RXR agonists by molecular docking and molecular dynamic simulation strategies. The docking studies indicated bexarotene as a lead compound that can activate various RXR receptor isoforms (α, ß, and γ) and has a strong binding affinity to the receptor protein than retinoic acid, which is known as a natural endogenous RXR agonist. Dynamic simulation studies confirmed that the hydrogen bonding and hydrophobic interactions were highly stable in all the three isoforms of the RXR-bexarotene complex. To further validate the significance of the RXR receptor in neurons, in vitro pharmacological treatment of neuronal SH-SY5Y cells with bexarotene was performed. In vitro data from SH-SY5Y cells confirmed that bexarotene activated RXR-simulated neurite outgrowth significantly. We conclude that bexarotene could be potentially used as an exogenous activator of RXRs and emerge as a good drug target for several neurodegenerative disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA