Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(2): e2304470121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38175868

RESUMO

Repeating patterns of synovial joints are a highly conserved feature of articulated digits, with variations in joint number and location resulting in diverse digit morphologies and limb functions across the tetrapod clade. During the development of the amniote limb, joints form iteratively within the growing digit ray, as a population of distal progenitors alternately specifies joint and phalanx cell fates to segment the digit into distinct elements. While numerous molecular pathways have been implicated in this fate choice, it remains unclear how they give rise to a repeating pattern. Here, using single-cell RNA sequencing and spatial gene expression profiling, we investigate the transcriptional dynamics of interphalangeal joint specification in vivo. Combined with mathematical modeling, we predict that interactions within the BMP signaling pathway-between the ligand GDF5, the inhibitor NOGGIN, and the intracellular effector pSMAD-result in a self-organizing Turing system that forms periodic joint patterns. Our model is able to recapitulate the spatiotemporal gene expression dynamics observed in vivo, as well as phenocopy digit malformations caused by BMP pathway perturbations. By contrasting in silico simulations with in vivo morphometrics of two morphologically distinct digits, we show how changes in signaling parameters and growth dynamics can result in variations in the size and number of phalanges. Together, our results reveal a self-organizing mechanism that underpins amniote digit segmentation and its evolvability and, more broadly, illustrate how Turing systems based on a single molecular pathway may generate complex repetitive patterns in a wide variety of organisms.


Assuntos
Padronização Corporal , Articulações , Animais , Padronização Corporal/genética , Extremidades , Transdução de Sinais , Aves , Mamíferos/genética
2.
Dev Dyn ; 249(3): 313-327, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31702845

RESUMO

Fifty years ago, Lewis Wolpert introduced the concept of "positional information" to explain how patterns form in a multicellular embryonic field. Using morphogen gradients, whose continuous distributions of positional values are discretized via thresholds into distinct cellular states, he provided, at the theoretical level, an elegant solution to the "French Flag problem." In the intervening years, many experimental studies have lent support to Wolpert's ideas. However, the embryonic patterning of highly repetitive morphological structures, as often occurring in nature, can reveal limitations in the strict implementation of his initial theory, given the number of distinct threshold values that would have to be specified. Here, we review how positional information is complemented to circumvent these inadequacies, to accommodate tissue growth and pattern periodicity. In particular, we focus on functional anatomical assemblies composed of such structures, like the vertebrate spine or tetrapod digits, where the resulting segmented architecture is intrinsically linked to periodic pattern formation and unidirectional growth. These systems integrate positional information and growth with additional patterning cues that, we suggest, increase robustness and evolvability. We discuss different experimental and theoretical models to study such patterning systems, and how the underlying processes are modulated over evolutionary timescales to enable morphological diversification.


Assuntos
Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Animais , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Morfogênese/genética , Transdução de Sinais/genética
3.
Cell Death Dis ; 10(11): 812, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31649239

RESUMO

Head dysgenesis is a major cause of fetal demise and craniofacial malformation. Although mutations in genes of the head ontogenetic program have been reported, many cases remain unexplained. Head dysgenesis has also been related to trisomy or amplification of the chromosomal region overlapping the CDX2 homeobox gene, a master element of the trunk ontogenetic program. Hence, we investigated the repercussion on head morphogenesis of the imbalance between the head and trunk ontogenetic programs, by means of ectopic rostral expression of CDX2 at gastrulation. This caused severe malformations affecting the forebrain and optic structures, and also the frontonasal process associated with defects in neural crest cells colonization. These malformations are the result of the downregulation of genes of the head program together with the abnormal induction of trunk program genes. Together, these data indicate that the imbalance between the anterior and posterior ontogenetic programs in embryos is a new possible cause of head dysgenesis during human development, linked to defects in setting up anterior neuroectodermal structures.


Assuntos
Fator de Transcrição CDX2/genética , Anormalidades Craniofaciais/genética , Cabeça/fisiopatologia , Morfogênese/genética , Animais , Anormalidades Craniofaciais/fisiopatologia , Desenvolvimento Embrionário/genética , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox/genética , Cabeça/crescimento & desenvolvimento , Humanos , Camundongos , Crista Neural/crescimento & desenvolvimento , Crista Neural/fisiopatologia , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA