RESUMO
BACKGROUND: The majority of stroke survivors experiences significant hand impairments, as weakness and spasticity, with a severe impact on the activity of daily living. To objectively evaluate hand deficits, quantitative measures are needed. The aim of this study is to assess the reliability, the validity and the discriminant ability of the instrumental measures provided by a robotic device for hand rehabilitation, in a sample of patients with subacute stroke. MATERIAL AND METHODS: In this study, 120 patients with stroke and 40 controls were enrolled. Clinical evaluation included finger flexion and extension strength (using the Medical Research Council, MRC), finger spasticity (using the Modified Ashworth Scale, MAS) and motor control and dexterity during ADL performance (by means of the Frenchay Arm Test, FAT). Robotic evaluations included finger flexion and extension strength, muscle tone at rest, and instrumented MAS and Modified Tardieu Scale. Subjects were evaluated twice, one day apart, to assess the test-retest reliability of the robotic measures, using the Intraclass Correlation Coefficient (ICC). To estimate the response stability, the standard errors of measurement and the minimum detectable change (MDC) were also calculated. Validity was assessed by analyzing the correlations between the robotic metrics and the clinical scales, using the Spearman's Correlation Coefficient (r). Finally, we investigated the ability of the robotic measures to distinguish between patients with stroke and healthy subjects, by means of Mann-Whitney U tests. RESULTS: All the investigated measures were able to discriminate patients with stroke from healthy subjects (p < 0.001). Test-retest reliability was found to be excellent for finger strength (in both flexion and extension) and muscle tone, with ICCs higher than 0.9. MDCs were equal to 10.6 N for finger flexion, 3.4 N for finger extension, and 14.3 N for muscle tone. Conversely, test-retest reliability of the spasticity measures was poor. Finally, finger strength (in both flexion and extension) was correlated with the clinical scales (r of about 0.7 with MRC, and about 0.5 with FAT). DISCUSSION: Finger strength (in both flexion and extension) and muscle tone, as provided by a robotic device for hand rehabilitation, are reliable and sensitive measures. Moreover, finger strength is strongly correlated with clinical scales. Changes higher than the obtained MDC in these robotic measures could be considered as clinically relevant and used to assess the effect of a rehabilitation treatment in patients with subacute stroke.
Assuntos
Exoesqueleto Energizado , Robótica/instrumentação , Reabilitação do Acidente Vascular Cerebral/instrumentação , Idoso , Feminino , Dedos , Humanos , Masculino , Pessoa de Meia-Idade , Espasticidade Muscular/diagnóstico , Espasticidade Muscular/etiologia , Amplitude de Movimento Articular/fisiologia , Reprodutibilidade dos Testes , Acidente Vascular Cerebral/complicaçõesRESUMO
Here we describe a simple approach for the simultaneous detection of multiple microRNAs (miRNAs) using a single nanostructured reagent as surface plasmon resonance imaging (SPRi) enhancer and without using enzymatic reactions, sequence specific enhancers or multiple enhancing steps as normally reported in similar studies. The strategy involves the preparation and optimisation of neutravidin-coated gold nanospheres (nGNSs) functionalised with a previously biotinylated antibody (Ab) against DNA/RNA hybrids. The Ab guarantees the recognition of any miRNA sequence adsorbed on a surface properly functionalised with different DNA probes; at the same time, gold nanoparticles permit to detect this interaction, thus producing enough SPRi signal even at a low ligand concentration. After a careful optimisation of the nanoenhancer and after its characterisation, the final assay allowed the simultaneous detection of four miRNAs with a limit of detection (LOD) of up to 0.5 pM (equal to 275 attomoles in 500 µL) by performing a single enhancing injection. The proposed strategy shows good signal specificity and permits to discriminate wild-type, single- and triple-mutated sequences much better than non-enhanced SPRi. Finally, the method works properly in complex samples (total RNA extracted from blood) as demonstrated by the detection of four miRNAs potentially related to multiple sclerosis used as case study. This proof-of-concept study confirms that the approach provides the possibility to detect a theoretically unlimited number of miRNAs using a simple protocol and an easily prepared enhancing reagent, and may further facilitate the development of affordable multiplexing miRNA screening for clinical purposes.
Assuntos
MicroRNAs/análise , Ressonância de Plasmônio de Superfície/métodos , Adsorção , DNA/química , Enzimas/química , Indicadores e Reagentes/química , Dispositivos Lab-On-A-Chip , Ligantes , Limite de Detecção , MicroRNAs/química , Microscopia Eletrônica de Varredura , Hibridização de Ácido Nucleico , Estudo de Prova de Conceito , Propriedades de SuperfícieRESUMO
The use of exosomes for diagnostic and disease monitoring purposes is becoming particularly appealing in biomedical research because of the possibility to study directly in biological fluids some of the features related to the organs from which exosomes originate. A paradigmatic example are brain-derived exosomes that can be found in plasma and used as a direct read-out of the status of the central nervous system (CNS). Inspired by recent remarkable development of plasmonic biosensors, we have designed a surface plasmon resonance imaging (SPRi) assay that, taking advantage of the fact that exosome size perfectly fits within the surface plasmon wave depth, allows the detection of multiple exosome subpopulations of neural origin directly in blood. By use of an array of antibodies, exosomes derived from neurons and oligodendrocytes were isolated and detected with good sensitivity. Subsequently, by injecting a second antibody on the immobilized vesicles, we were able to quantify the amount of CD81 and GM1, membrane components of exosomes, on each subpopulation. In this way, we have been able to demonstrate that they are not homogeneously expressed but exhibit a variable abundance according to the exosome cellular origin. These results confirm the extreme variability of exosome composition and demonstrate how SPRi can provide an effective tool for their characterization. Besides, our work paves the road toward more precise clinical studies on the use of exosomes as potential biomarkers of neurodegenerative diseases.
Assuntos
Encéfalo/citologia , Exossomos/química , Neurônios/química , Oligodendroglia/química , Plasma/química , Ressonância de Plasmônio de Superfície/métodos , Adulto , Anticorpos Imobilizados/química , Feminino , Gangliosídeo G(M1)/análise , Humanos , Masculino , Tetraspanina 28/análiseRESUMO
Among polymeric nanoparticles designed for cancer therapy, PLGA nanoparticles have become one of the most popular polymeric devices for chemotherapeutic-based nanoformulations against several kinds of malignant diseases. Promising properties, including long-circulation time, enhanced tumor localization, interference with "multidrug" resistance effects, and environmental biodegradability, often result in an improvement of the drug bioavailability and effectiveness. In the present work, we have synthesized 1,7-bis(3,4-dimethoxyphenyl)-5-hydroxyhepta-1,4,6-trien-3-one (ASC-J9) and developed uniform ASC-J9-loaded PLGA nanoparticles of about 120 nm, which have been prepared by a single-emulsion process. Structural and morphological features of the nanoformulation were analyzed, followed by an accurate evaluation of the in vitro drug release kinetics, which exhibited Fickian law diffusion over 10 days. The intracellular degradation of ASC-J9-bearing nanoparticles within estrogen-dependent MCF-7 breast cancer cells was correlated to a time- and dose-dependent activity of the released drug. A cellular growth inhibition associated with a specific cell cycle G2/M blocking effect caused by ASC-J9 release inside the cytosol allowed us to put forward a hypothesis on the action mechanism of this nanosystem, which led to the final cell apoptosis. Our study was accomplished using Annexin V-based cell death analysis, MTT assessment of proliferation, radical scavenging activity, and intracellular ROS evaluation. Moreover, the intracellular localization of nanoformulated ASC-J9 was confirmed by a Raman optical imaging experiment designed ad hoc. PLGA nanoparticles and ASC-J9 proved also to be safe for a healthy embryo fibroblast cell line (3T3-L1), suggesting a possible clinical translation of this potential nanochemotherapeutic to expand the inherently poor bioavailability of hydrophobic ASC-J9 that could be proposed for the treatment of malignant breast cancer.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Curcumina/análogos & derivados , Sistemas de Liberação de Medicamentos , Estrogênios/química , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Células 3T3-L1 , Animais , Apoptose , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Curcumina/farmacocinética , Relação Dose-Resposta a Droga , Feminino , Sequestradores de Radicais Livres , Humanos , Células MCF-7 , Camundongos , Nanomedicina/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espécies Reativas de Oxigênio , Espectrofotometria Ultravioleta , Análise Espectral Raman , Fatores de TempoRESUMO
Introduction: Most patients suffering from neurological disorders endure varying degrees of upper limb dysfunction, limiting their everyday activities, with only a limited number regaining full arm use. Robotic and technological rehabilitation has been demonstrated to be a feasible solution to guarantee an effective rehabilitation to recover upper limb performance or to prevent complications of upper limb immobility. However, there is currently a lack of studies which analyze the sustainability of robotic and technological rehabilitation by comparing its costs to conventional rehabilitation pathways. Methods: Since technology-based and conventional rehabilitation of the upper limb have been demonstrated to have comparable efficacy when the rehabilitation dose is matched, our study concentrates on a cost minimization analysis. The aim of the study is to compare the costs of a "mixed" rehabilitation cycle, which combines conventional and technology-based treatments (the latter delivered with a single therapist supervising several patients), with a cycle of purely conventional treatments. This has been done by developing a cost model and retrospectively analyzing the costs sustained by an Italian hospital which has adopted such a mixed model. A sensitivity analysis has been done to identify the parameters of the model that have the greatest influence on cost difference and to evaluate their optimal values in terms of efficiency of mixed rehabilitation. Finally, probabilistic simulations have been applied to consider the variability of model parameters around such optimized values and evaluate the probability of achieving a given level of savings. Results: We found a cost difference of 49.60 per cycle in favor of mixed rehabilitation. The sensitivity analysis demonstrated that, in the situation of the hospital under investigation, the parameter having the largest influence on the cost difference is the number of robotic treatments in a mixed rehab cycle. Probabilistic simulations indicate a probability higher than 98% of an optimized mixed rehabilitation cycle being less expensive than a pure conventional one. Conclusion: Through a retrospective cost analysis, we found that the technology-based mixed rehabilitation approach, within a specific organizational model allowing a single physiotherapist to supervise up to four patients concurrently, allowed cost savings compared to the conventional rehabilitation model.
Assuntos
Custos e Análise de Custo , Robótica , Extremidade Superior , Humanos , Itália , Estudos Retrospectivos , Robótica/economia , Doenças do Sistema Nervoso/reabilitação , Masculino , Feminino , Pessoa de Meia-IdadeRESUMO
A brain-computer interface (BCI) directly uses brain-activity signals to allow users to operate the environment without any muscular activation. Thanks to this feature, BCI systems can be employed not only as assistive devices, but also as neurorehabilitation tools in clinical settings. However, several critical issues need to be addressed before using BCI in neurorehabilitation, issues ranging from signal acquisition and selection of the proper BCI paradigm to the evaluation of the affective state, cognitive load and system acceptability of the users. Here we discuss these issues, illustrating how a rehabilitation program can benefit from BCI sessions, and summarize the results obtained so far in this field. Also provided are experimental data concerning two important topics related to BCI usability in rehabilitation: the possibility of using dry electrodes for EEG acquisition, and the monitoring of psychophysiological effects during BCI tasks.
Assuntos
Encéfalo/fisiologia , Doenças do Sistema Nervoso/reabilitação , Processamento de Sinais Assistido por Computador , Interface Usuário-Computador , Eletrodos , Humanos , Tecnologia AssistivaRESUMO
Virtual reality for the treatment of motor impairment is a burgeoning application of digital technology in neurorehabilitation. Virtual reality systems pose an opportunity for health care providers to augment the dose of task-oriented exercises delivered both in the clinic, and via telerehabilitation models in the home. The technology is almost exclusively applied as an adjunct to traditional approaches and is typically characterized by the use of gamified exergames which feature task-oriented physiotherapy exercises. At present, evidence for the efficacy of this technology is sparse, with some reviews suggesting it is the same or no better than conventional approaches. The purpose of this article is to provide real-world insights on the adoption of a virtual reality by 3 European clinics in 3 different service delivery models. These include an inpatient setting for Parkinson disease, a kiosk model for pediatric neurorehabilitation, and a home-based telerehabilitation model for neurologic patients. Motivations, settings, requirements for the pathology, outcomes, and challenges encountered during this process are reported with the objective of priming clinicians on what to expect when implementing virtual reality in neurorehabilitation.
Assuntos
Terapia por Exercício/métodos , Hospitais Universitários , Atividade Motora/fisiologia , Reabilitação Neurológica/métodos , Equilíbrio Postural/fisiologia , Realidade Virtual , Europa (Continente) , HumanosRESUMO
Extracellular vesicles (EVs) from mesenchymal stromal cells (MSC) are emerging as valuable therapeutic agents for tissue regeneration and immunomodulation, but their clinical applications have so far been limited by the technical restraints of current isolation and characterisation procedures. This study shows for the first time the successful application of Raman spectroscopy as label-free, sensitive and reproducible means of carrying out the routine bulk characterisation of MSC-derived vesicles before their use in vitro or in vivo, thus promoting the translation of EV research to clinical practice. The Raman spectra of the EVs of bone marrow and adipose tissue-derived MSCs were compared with human dermal fibroblast EVs in order to demonstrate the ability of the method to distinguish the vesicles of the three cytotypes automatically with an accuracy of 93.7%. Our data attribute a Raman fingerprint to EVs from undifferentiated and differentiated cells of diverse tissue origin, and provide insights into the biochemical characteristics of EVs from different sources and into the differential contribution of sphingomyelin, gangliosides and phosphatidilcholine to the Raman spectra themselves.
Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Análise Espectral Raman , Biomarcadores , Vesículas Extracelulares/ultraestrutura , Humanos , Células-Tronco Mesenquimais/ultraestrutura , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismoRESUMO
Multiple ligand presentation is a powerful strategy to enhance the affinity of a probe for its corresponding target. A promising application of this concept lies in the analytical field, where surface immobilized probes interact with their corresponding targets in the context of complex biological samples. Here we investigate the effect of multiple epitope presentation (MEP) in the challenging context of IgE-detection in serum samples using peptide microarrays, and evaluate the influence of probes surface density on the assay results. Using the milk allergen alpha-lactalbumin as a model, we have synthesized three immunoreactive epitope sequences in a linear, branched and tandem form and exploited a chemoselective click strategy (CuAAC) for their immobilization on the surface of two biosensors, a microarray and an SPR chip both modified with the same clickable polymeric coating. We first demonstrated that a fine tuning of the surface peptide density plays a crucial role to fully exploit the potential of oriented and multiple peptide display. We then compared the three multiple epitope presentations in a microarray assay using sera samples from milk allergic patients, confirming that a multiple presentation, in particular that of the tandem construct, allows for a more efficient characterization of IgE-binding fingerprints at a statistically significant level. To gain insights on the binding parameters that characterize antibody/epitopes affinity, we selected the most reactive epitope of the series (LAC1) and performed a Surface Plasmon Resonance Imaging (SPRi) analysis comparing different epitope architectures (linear versus branched versus tandem). We demonstrated that the tandem peptide provides an approximately twofold increased binding capacity with respect to the linear and branched peptides, that could be attributed to a lower rate of dissociation (Kd).
Assuntos
Mapeamento de Epitopos , Imunoglobulina E/sangue , Análise Serial de Proteínas , Alérgenos/imunologia , Sequência de Aminoácidos , Epitopos , Humanos , Hipersensibilidade a Leite/sangue , PeptídeosRESUMO
Gold nanorods are an important kind of nanoparticles characterized by peculiar plasmonic properties. Despite their widespread use in nanotechnology, the synthetic methods for the preparation of gold nanorods are still not fully optimized. In this paper we describe a new, highly efficient, two-step protocol based on the use of hydroquinone as a mild reducing agent. Our approach allows the preparation of nanorods with a good control of size and aspect ratio (AR) simply by varying the amount of hexadecyl trimethylammonium bromide (CTAB) and silver ions (Ag(+)) present in the "growth solution". By using this method, it is possible to markedly reduce the amount of CTAB, an expensive and cytotoxic reagent, necessary to obtain the elongated shape. Gold nanorods with an aspect ratio of about 3 can be obtained in the presence of just 50 mM of CTAB (versus 100 mM used in the standard protocol based on the use of ascorbic acid), while shorter gold nanorods are obtained using a concentration as low as 10 mM.
Assuntos
Hidroquinonas/química , Nanotecnologia/métodos , Nanotubos/química , Ouro , PrataRESUMO
AIMS: Chronic lung allograft dysfunction represents the main cause of death after lung transplantation, and so far there is no effective therapy. Mesenchymal cells (MCs) are primarily responsible for fibrous obliteration of small airways typical of chronic lung allograft dysfunction. Here, we engineered gold nanoparticles containing a drug in the hydrophobic section to inhibit MCs, and exposing on the outer hydrophilic surface a monoclonal antibody targeting a MC-specific marker (half-chain gold nanoparticles with everolimus). MATERIALS & METHODS: Half-chain gold nanoparticles with everolimus have been synthesized and incubated with MCs to evaluate the effect on proliferation and apoptosis. RESULTS & DISCUSSION: Drug-loaded gold nanoparticles coated with the specific antibody were able to inhibit proliferation and induce apoptosis without stimulating an inflammatory response, as assessed by in vitro experiments. CONCLUSION: These findings demonstrate the effectiveness of our nanoparticles in inhibiting MCs and open new perspectives for a local treatment of chronic lung allograft dysfunction.
Assuntos
Anticorpos Monoclonais/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Transplante de Pulmão/efeitos adversos , Células-Tronco Mesenquimais/efeitos dos fármacos , Adulto , Idoso , Aloenxertos/efeitos dos fármacos , Aloenxertos/imunologia , Aloenxertos/patologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Apoptose/efeitos dos fármacos , Everolimo , Feminino , Ouro/administração & dosagem , Ouro/química , Humanos , Receptores de Hialuronatos/imunologia , Masculino , Células-Tronco Mesenquimais/imunologia , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Pessoa de Meia-Idade , Sirolimo/administração & dosagem , Sirolimo/análogos & derivados , Sirolimo/químicaRESUMO
In order to minimize the impact of systemic toxicity of drugs in the treatment of local acute and chronic inflammatory reactions, the achievement of reliable and efficient delivery of therapeutics in/through the skin is highly recommended. While the use of nanoparticles is now an established practice for drug intravenous targeted delivery, their transdermal penetration is still poorly understood and this important administration route remains almost unexplored. In the present study, we have synthesized magnetic (iron oxide) nanoparticles (MNP) coated with an amphiphilic polymer, developed a water-in-oil emulsion formulation for their topical administration and compared the skin penetration routes with the same nanoparticles deposited as a colloidal suspension. Transmission and scanning electron microscopies provided ultrastructural evidence that the amphiphilic nanoparticles (PMNP) cream formulation allowed the efficient penetration through all the skin layers with a controllable kinetics compared to suspension formulation. In addition to the preferential follicular pathway, also the intracellular and intercellular routes were involved. PMNP that crossed all skin layers were quantified by inductively coupled plasma mass spectrometry. The obtained data suggests that combining PMNP amphiphilic character with cream formulation improves the intradermal penetration of nanoparticles. While PMNP administration in living mice via aqueous suspension resulted in preferential nanoparticle capture by phagocytes and migration to draining lymph nodes, cream formulation favored uptake by all the analyzed dermis cell types, including hematopoietic and non-hematopoietic. Unlike aqueous suspension, cream formulation also favored the maintenance of nanoparticles in the dermal architecture avoiding their dispersion and migration to draining lymph nodes via afferent lymphatics.
Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Administração Cutânea , Administração Tópica , Animais , Química Farmacêutica , Coloides , Humanos , Nanopartículas de Magnetita/química , Camundongos , Nanopartículas/ultraestrutura , Pele/citologia , Pele/imunologia , Pele/metabolismo , Absorção CutâneaRESUMO
In our study, 2D nanopillar arrays with plasmonic crystal properties are optimized for surface-enhanced Raman spectroscopy (SERS) application and tested in a biochemical assay for the simultaneous detection of multiple genetic leukemia biomarkers. The special fabrication process combining soft lithography and plasma deposition techniques allows tailoring of the structural and chemical parameters of the crystal surfaces. In this way, it has been possible to tune the plasmonic resonance spectral position close to the excitation wavelength of the monochromatic laser light source in order to maximize the enhancing properties of the substrate. Samples are characterized by scanning electron microscopy and reflectance measurements and tested for SERS activity using malachite green. Besides, as the developed substrate had been prepared on a simple glass slide, SERS detection from the support side is also demonstrated. The optimized substrate is functionalized with thiol-modified capture oligonucleotides, and concentration-dependent signal of the target nucleotide is detected in a sandwich assay with labeled gold nanoparticles. Gold nanoparticles functionalized with different DNA and various Raman reporters are applied in a microarray-based assay recognizing a disease biomarker (Wilms tumor gene) and housekeeping gene expressions in the same time on spatially separated microspots. The multiplexing performance of the SERS-based bioassay is illustrated by distinguishing Raman dyes based on their complex spectral fingerprints.
Assuntos
Ouro/química , Nanopartículas/química , Polímeros/química , Análise Espectral Raman/métodos , Biomarcadores Tumorais/metabolismo , Leucemia/genética , Leucemia/metabolismo , Microscopia Eletrônica de VarreduraRESUMO
The present work reports on Raman and Surface Enhanced Raman Scattering (SERS) vibrational fingerprints of ß-carotene and haemoglobin in fresh whole blood (i.e. right after blood test) with different laser excitations, i.e. visible (514 nm) and near-infrared (NIR, 785 nm). The use of colloidal silver nanoparticles significantly increases the Raman signal, thus providing a clear SERS spectrum of blood. The collected spectra have been examined and marker bands of ß-carotene and of the haem prosthetic group of haemoglobin have been found. In particular, the fundamental features of ß-carotene (514 nm excitation), blood proteins and haem molecules (785 nm excitation) were recognized and assigned. Moreover haemoglobin SERS signals can be identified and related with its oxygenation state (oxy-haemoglobin). The data reported show the prospects of Raman and SERS techniques to detect important bio-molecules in a whole blood sample with no pre-treatment.
Assuntos
Dermatoglifia , Heme/química , Hemoglobinas/metabolismo , beta Caroteno/sangue , Humanos , Prata , Análise Espectral Raman , Propriedades de SuperfícieRESUMO
An EEG-based brain-computer system can be used to control external devices such as computers, wheelchairs or Virtual Environments. One of the most important applications is a spelling device to aid severely disabled individuals with communication, for example people disabled by amyotrophic lateral sclerosis (ALS). P300-based BCI systems are optimal for spelling characters with high speed and accuracy, as compared to other BCI paradigms such as motor imagery. In this study, 100 subjects tested a P300-based BCI system to spell a 5-character word with only 5 min of training. EEG data were acquired while the subject looked at a 36-character matrix to spell the word WATER. Two different versions of the P300 speller were used: (i) the row/column speller (RC) that flashes an entire column or row of characters and (ii) a single character speller (SC) that flashes each character individually. The subjects were free to decide which version to test. Nineteen subjects opted to test both versions. The BCI system classifier was trained on the data collected for the word WATER. During the real-time phase of the experiment, the subject spelled the word LUCAS, and was provided with the classifier selection accuracy after each of the five letters. Additionally, subjects filled out a questionnaire about age, sex, education, sleep duration, working duration, cigarette consumption, coffee consumption, and level of disturbance that the flashing characters produced. 72.8% (N=81) of the subjects were able to spell with 100% accuracy in the RC paradigm and 55.3% (N=38) of the subjects spelled with 100% accuracy in the SC paradigm. Less than 3% of the subjects did not spell any character correctly. People who slept less than 8h performed significantly better than other subjects. Sex, education, working duration, and cigarette and coffee consumption were not statistically related to differences in accuracy. The disturbance of the flashing characters was rated with a median score of 1 on a scale from 1 to 5 (1, not disturbing; 5, highly disturbing). This study shows that high spelling accuracy can be achieved with the P300 BCI system using approximately 5 min of training data for a large number of non-disabled subjects, and that the RC paradigm is superior to the SC paradigm. 89% of the 81 RC subjects were able to spell with accuracy 80-100%. A similar study using a motor imagery BCI with 99 subjects showed that only 19% of the subjects were able to achieve accuracy of 80-100%. These large differences in accuracy suggest that with limited amounts of training data the P300-based BCI is superior to the motor imagery BCI. Overall, these results are very encouraging and a similar study should be conducted with subjects who have ALS to determine if their accuracy levels are similar.