Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Sci ; 103(2): 2024-2039, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31864736

RESUMO

Since heritability of CH4 emissions in ruminants was demonstrated, various attempts to generate large individual animal CH4 data sets have been initiated. Predicting individual CH4 emissions based on equations using milk mid-infrared (MIR) spectra is currently considered promising as a low-cost proxy. However, the CH4 emission predicted by MIR in individuals still has to be confirmed by measurements. In addition, it remains unclear how low CH4 emitting cows differ in intake, digestion, and efficiency from high CH4 emitters. In the current study, putatively low and putatively high CH4 emitting Brown Swiss cows were selected from the entire Swiss herdbook population (176,611 cows), using an MIR-based prediction equation. Eventually, 15 low and 15 high CH4 emitters from 29 different farms were chosen for a respiration chamber (RC) experiment in which all cows were fed the same forage-based diet. Several traits related to intake, digestion, and efficiency were quantified over 8 d, and CH4 emission was measured in 4 open circuit RC. Daily CH4 emissions were also estimated using data from 2 laser CH4 detectors (LMD). The MIR-predicted CH4 production (g/d) was quite constant in low and high emission categories, in individuals across sites (home farm, experimental station), and within equations (first available and refined versions). The variation of the MIR-predicted values was substantially lower using the refined equation. However, the predicted low and high emitting cows (n = 28) did not differ on average in daily CH4 emissions measured either with RC or estimated using LMD, and no correlation was found between CH4 predictions (MIR) and CH4 emissions measured in RC. When individuals were recategorized based on CH4 yield measured in RC, differences between categories of 10 low and 10 high CH4 emitters were about 20%. Low CH4 emitting cows had a higher feed intake, milk yield, and residual feed intake, but they differed only weakly in eating pattern and digesta mean retention times. Low CH4 emitters were characterized by lower acetate and higher propionate proportions of total ruminal volatile fatty acids. We concluded that the current MIR-based CH4 predictions are not accurate enough to be implemented in breeding programs for cows fed forage-based diets. In addition, low CH4 emitting cows have to be characterized in more detail using mechanistic studies to clarify in more detail the properties that explain the functional differences found in comparison with other cows.


Assuntos
Bovinos/fisiologia , Comportamento Alimentar , Metano/análise , Leite/química , Espectrofotometria Infravermelho/veterinária , Animais , Dieta/veterinária , Digestão , Feminino , Lactação , Lasers , Metano/metabolismo , Rúmen/metabolismo
2.
J Dairy Sci ; 102(12): 11751-11765, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31587911

RESUMO

Currently, various attempts are being made to implement breeding schemes aimed at producing low methane (CH4) emitting cows. We investigated the persistence of differences in CH4 emission between groups of cows categorized as either low or high emitters over a 5-mo period. Two feeding regimens (pasture vs. indoors) were used. Early- to mid-lactation Holstein Friesian cows were categorized as low or high emitters (n = 10 each) retrospectively, using predictions from milk mid-infrared (MIR) spectra, before the start of the experiment. Data from MIR estimates and from measurements with the GreenFeed (GF; C-Lock Technology Inc., Rapid City, SD) system over the 5-mo experiment were combined into 7-, 14-, and 28-d periods. Feed intake, eating and ruminating behavior, and ruminal fluid traits were determined in two 7-d measurement periods in the grazing season. The CH4 emission data were analyzed using a split-plot ANOVA, and the repeatability of each of the applied methods for determining CH4 emission was calculated. Traits other than CH4 emission were analyzed for differences between low and high emitters using a linear mixed model. The initial category-dependent differences in daily CH4 production persisted over the subsequent 5 mo and across 2 feeding regimens with both methods. The repeatability analysis indicated that the biweekly milk control scheme, and even a monthly scheme as practiced on farms, might be sufficient for confirming category differences. However, the relationship between CH4 data estimated by MIR and measured with GF for individual cows was weak (R2 = 0.26). The categorization based on CH4 production also generated differences in CH4 emission per kilogram of milk; differentiation between cow categories was not persistent based on milk MIR spectra and GF. Compared with the high emitters, low emitters tended to show a lower acetate-to-propionate ratio in ruminal volatile fatty acids, whereas feed intake and ruminating time did not differ. Interestingly, the low emitters spent less time eating than the high emitters. In conclusion, the CH4 estimation from analyzing the milk MIR spectra is an appropriate proxy to form and regularly control categories of cows with different CH4 production levels. The categorization was also sufficient to secure similar and persistent differences in emission intensity when estimated by MIR spectra of the milk. Further studies are needed to determine whether MIR data from individual cows are sufficiently accurate for breeding.


Assuntos
Bovinos/fisiologia , Ácidos Graxos Voláteis/análise , Metano/análise , Leite/química , Animais , Cruzamento , Dieta/veterinária , Comportamento Alimentar , Feminino , Lactação , Metano/metabolismo , Estudos Retrospectivos , Estações do Ano , Espectrofotometria Infravermelho/veterinária
3.
J Dairy Sci ; 101(8): 7618-7624, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29753478

RESUMO

Evaluation and mitigation of enteric methane (CH4) emissions from ruminant livestock, in particular from dairy cows, have acquired global importance for sustainable, climate-smart cattle production. Based on CH4 reference measurements obtained with the SF6 tracer technique to determine ruminal CH4 production, a current equation permits evaluation of individual daily CH4 emissions of dairy cows based on milk Fourier transform mid-infrared (FT-MIR) spectra. However, the respiration chamber (RC) technique is considered to be more accurate than SF6 to measure CH4 production from cattle. This study aimed to develop an equation that allows estimating CH4 emissions of lactating cows recorded in an RC from corresponding milk FT-MIR spectra and to challenge its robustness and relevance through validation processes and its application on a milk spectral database. This would permit confirming the conclusions drawn with the existing equation based on SF6 reference measurements regarding the potential to estimate daily CH4 emissions of dairy cows from milk FT-MIR spectra. A total of 584 RC reference CH4 measurements (mean ± standard deviation of 400 ± 72 g of CH4/d) and corresponding standardized milk mid-infrared spectra were obtained from 148 individual lactating cows between 7 and 321 d in milk in 5 European countries (Germany, Switzerland, Denmark, France, and Northern Ireland). The developed equation based on RC measurements showed calibration and cross-validation coefficients of determination of 0.65 and 0.57, respectively, which is lower than those obtained earlier by the equation based on 532 SF6 measurements (0.74 and 0.70, respectively). This means that the RC-based model is unable to explain the variability observed in the corresponding reference data as well as the SF6-based model. The standard errors of calibration and cross-validation were lower for the RC model (43 and 47 g/d vs. 66 and 70 g/d for the SF6 version, respectively), indicating that the model based on RC data was closer to actual values. The root mean squared error (RMSE) of calibration of 42 g/d represents only 10% of the overall daily CH4 production, which is 23 g/d lower than the RMSE for the SF6-based equation. During the external validation step an RMSE of 62 g/d was observed. When the RC equation was applied to a standardized spectral database of milk recordings collected in the Walloon region of Belgium between January 2012 and December 2017 (1,515,137 spectra from 132,658 lactating cows in 1,176 different herds), an average ± standard deviation of 446 ± 51 g of CH4/d was estimated, which is consistent with the range of the values measured using both RC and SF6 techniques. This study confirmed that milk FT-MIR spectra could be used as a potential proxy to estimate daily CH4 emissions from dairy cows provided that the variability to predict is covered by the model.


Assuntos
Bovinos/metabolismo , Análise de Fourier , Metano/análise , Leite/química , Espectrofotometria Infravermelho/veterinária , Animais , Feminino , Lactação , Espectrofotometria Infravermelho/métodos
4.
J Anim Physiol Anim Nutr (Berl) ; 102(3): 639-651, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29286177

RESUMO

The digestive physiology of cattle is characterised by comparatively long digesta mean retention times (MRTs), a particle sorting mechanism (difference in MRTs of large vs. small particles) and a distinct digesta washing (difference in MRTs between particles and fluids) in the reticulorumen (RR). How these processes mature during ontogeny, and how they link to other digestion characteristics and methane production, is largely unknown. We used a set of passage markers (Co-EDTA for fluids and hay particles of 2, 5 and 8 mm length mordanted with Cr, La and Ce, respectively) to measure MRTs in 12 heifers (0.5-2.1 years; hay only) and two groups of 15 lactating cows (2.4-10.0 years; forage-only vs. forage-concentrate diet). The MRTs differed between markers (Co < Cr < La < Ce) and were longer in heifers than cows, consistent with the lower feed intake in heifers. MRTs were mostly similar between cow groups and increased with age. Digesta washing was not affected by group, age, feed intake and number of chews per unit of feed. The degree of digesta washing was not related to CH4 measures. Particle sorting was more prominent in cows than heifers but did not differ between cow groups or change with age in cows. This could be the consequence of the abrupt increase in intake from heifers to cows at a time when gut capacity is not yet fully developed; particle sorting might then clear smaller particles from the RR sooner allowing a higher intake. Surprisingly, CH4 yield per ingested feed did not correlate with MRTs, and CH4 yield per unit of digested fibre decreased with increasing MRTs and with increasing fibre digestibility. As this pattern occurred in heifers and both cow groups, it appeared independent of age, indicating a mechanism that has not been described in the literature so far and requires further investigation.


Assuntos
Envelhecimento , Bovinos/fisiologia , Conteúdo Gastrointestinal/química , Motilidade Gastrointestinal/fisiologia , Metano/biossíntese , Animais , Feminino
5.
J Dairy Sci ; 99(5): 3472-3485, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26923053

RESUMO

Previous studies indicated that absolute CH4 emissions and CH4 yield might increase and that milk production efficiency might decrease with age in cattle. Both would make strategies to increase longevity in dairy cattle less attractive. These aspects were experimentally determined in Brown Swiss cattle distributed continuously across a large age range. Thirty lactating dairy cows (876-3,648 d of age) received diets consisting of hay, corn silage, and grass pellets supplemented with 0 or 5kg of concentrate per day. Twelve heifers (199-778 d of age) received hay only. Cows and heifers were members of herds subjected to the 2 different feeding regimens (with or without concentrate) for the past 10 yr. Methane emissions were measured individually for 2 d in open-circuit respiration chambers, followed by quantifying individual feed intake and milk yield over 8 d. Additional data on digestibility, rumination time, and passage time of feed of all experimental animals were available. Regression analyses were applied to evaluate effects of age and feeding regimen. Body weight, milk yield, and the hay proportion of forage dry matter intake were considered as covariates. Methane emissions per unit of intake, body weight, and milk yield were significantly related to age. Their development in the cows with age was characterized by an increase to maximum at around 2,000 d of age, followed by a decline. This response was not accompanied by corresponding age-related changes in intake, chewing activity, digesta passage time, and digestibility of organic matter, which would have explained shifts in CH4. However, fiber digestibility showed a similar change with age as methane emissions, resulting in quite stable methane emissions per unit of digestible fiber. As expected, methane emissions intensity per unit of milk produced was greater by 8% without concentrate than with concentrate, but no difference was noted in the response to age when the animals were subjected to different feeding regimens. The efficiency of milk production was only marginally influenced by age and diet, and no different response was observed for age in the 2 dietary regimens. In conclusion, life cycle analyses of milk production systems focusing on longevity should consider changing methane yields with age in addition to the variation in environmental costs for replacements of culled cows.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Dieta/veterinária , Metabolismo Energético , Metano/metabolismo , Fatores Etários , Animais , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Comportamento Alimentar , Feminino
6.
J Dairy Sci ; 99(5): 3457-3471, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26923042

RESUMO

Milk production strategies focusing on longevity and limited use of concentrate are receiving increasing attention. To evaluate such strategies, knowledge of the development with age of animal characteristics, particularly digestion, is indispensable. We therefore investigated the development of feed intake, chewing activity, and digestion in 30 lactating Brown Swiss cows (876-3,648 d old) and 12 heifers (199-778 d old). We also studied whether age effects were exhibited differently in animals selected from herds subjected for 11 yr either to a forage-only or to a forage-concentrate feeding regimen. Forages consisted of grass hay (the only feed for heifers), corn silage, and grass pellets. Measurements lasted for 8 d, where amounts and composition of feeds, feces, and milk were recorded and analyzed. Ruminal pH data and eating and rumination activity were assessed by pH sensors put into the rumen and halter-mounted noseband sensors. The mean retention time of feed particles was assessed using Cr-mordanted fiber and data were used to calculate dry matter gut fill. Data were subjected to regression analyses with age and feeding regimen as explanatory variables, and body weight, milk yield, and proportion of hay in forage as covariates. This allowed separating age-related changes of body weight and milk yield from independent age effects and correcting for differences in preference for individual forages. In cows, organic matter intake increased with age (from slightly below to above 20kg/d), as did mean retention time and gut fill. Digestibility of organic matter did not show a clear age dependency, but fiber digestibility had a maximum in cows of around 4 to 6 yr of age. Ruminal pH and absolute eating and rumination times did not vary with cow age. Young and old cows chewed regurgitated boluses more intensively (60-70 times) than middle-aged cows (about 50 times). Effects of feeding regimen were small, except for fiber intake and rumination time per unit of intake, owing to the different fiber content of the diets. No significant interactions between age and feeding regimen were found. Heifers spent more time eating and ruminating per unit of feed than cows, which resulted in a high fiber digestibility. Irrespective of the feeding regimen tested, older cows maintained intake and digestion efficiency with longer retention times and chewing rumination boluses more intensively. The results support efforts to extend the length of productive life in dairy cows.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Dieta/veterinária , Digestão , Comportamento Alimentar , Rúmen/metabolismo , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Feminino , Fermentação , Mastigação , Metano/metabolismo
7.
J Dairy Sci ; 98(8): 5740-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26026761

RESUMO

The main goal of this study was to develop, apply, and validate a new method to predict an indicator for CH4 eructed by dairy cows using milk mid-infrared (MIR) spectra. A novel feature of this model was the consideration of lactation stage to reflect changes in the metabolic status of the cow. A total of 446 daily CH4 measurements were obtained using the SF6 method on 142 Jersey, Holstein, and Holstein-Jersey cows. The corresponding milk samples were collected during these CH4 measurements and were analyzed using MIR spectroscopy. A first derivative was applied to the milk MIR spectra. To validate the novel calibration equation incorporating days in milk (DIM), 2 calibration processes were developed: the first was based only on CH4 measurements and milk MIR spectra (independent of lactation stage; ILS); the second included milk MIR spectra and DIM information (dependent on lactation stage; DLS) by using linear and quadratic modified Legendre polynomials. The coefficients of determination of ILS and DLS equations were 0.77 and 0.75, respectively, with standard error of calibration of 63g/d of CH4 for both calibration equations. These equations were applied to 1,674,763 milk MIR spectra from Holstein cows in the first 3 parities and between 5 and 365 DIM. The average CH4 indicators were 428, 444, and 448g/d by ILS and 444, 467, and 471g/d by DLS for cows in first, second, and third lactation, respectively. Behavior of the DLS indicator throughout the lactations was in agreement with the literature with values increasing between 0 and 100 DIM and decreasing thereafter. Conversely, the ILS indicator of CH4 emission decreased at the beginning of the lactation and increased until the end of the lactation, which differs from the literature. Therefore, the DLS indicator seems to better reflect biological processes that drive CH4 emissions than the ILS indicator. The ILS and DLS equations were applied to an independent data set, which included 59 respiration chamber measurements of CH4 obtained from animals of a different breed across a different production system. Results indicated that the DLS equation was much more robust than the ILS equation allowing development of indicators of CH4 emissions by dairy cows. Integration of DIM information into the prediction equation was found to be a good strategy to obtain biologically meaningful CH4 values from lactating cows by accounting for biological changes that occur throughout the lactation.


Assuntos
Bovinos/fisiologia , Lactação , Metano/análise , Leite/química , Espectrofotometria Infravermelho/veterinária , Animais , Feminino , Modelos Biológicos , Espectrofotometria Infravermelho/métodos
8.
Animal ; 13(1): 198-208, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29807552

RESUMO

Dairy production systems are often criticized as being major emitters of greenhouse gases (GHG). In this context, the extension of the length of the productive life of dairy cows is gaining interest as a potential GHG mitigation option. In the present study, we investigated cow and system GHG emission intensity and profitability based on data from 30 dairy cows of different productive lifetime fed either no or limited amounts of concentrate. Detailed information concerning productivity, feeding and individual enteric methane emissions of the individuals was available from a controlled experiment and herd book databases. A simplified GHG balance was calculated for each animal based on the milk produced at the time of the experiment and for their entire lifetime milk production. For the lifetime production, we also included the emissions arising from potential beef produced by fattening the offspring of the dairy cows. This accounted for the effect that changes in the length of productive life will affect the replacement rate and thus the number of calves that can be used for beef production. Profitability was assessed by calculating revenues and full economic costs for the cows in the data set. Both emission intensity and profitability were most favourable in cows with long productive life, whereas cows that had not finished their first lactation performed particularly unfavourably with regard to their emissions per unit of product and rearing costs were mostly not repaid. Including the potential beef production, GHG emissions in relation to total production of animal protein also decreased with age, but the overall variability was greater, as the individual cow history (lifetime milk yield, twin births, stillbirths, etc.) added further sources of variation. The present results show that increasing the length of productive life of dairy cows is a viable way to reduce the climate impact and to improve profitability of dairy production.


Assuntos
Bovinos/fisiologia , Indústria de Laticínios/métodos , Gases de Efeito Estufa/metabolismo , Longevidade , Metano/metabolismo , Animais , Indústria de Laticínios/economia , Feminino
9.
Animal ; 12(3): 515-527, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28735600

RESUMO

The changes taking place with age in energy turnover of dairy cattle are largely unknown. It is unclear whether the efficiency of energy utilization in digestion (characterized by faecal and methane energy losses) and in metabolism (characterized by urine and heat energy losses) is altered with age. In the present study, energy balance data were obtained from 30 lactating Brown Swiss dairy cows aged between 2 and 10 years, and 12 heifers from 0.5 to 2 years of age. In order to evaluate a possible dependence of age effects on diet type, half of the cattle each originated from two herds kept at the same farm, which were fed either on a forage-only diet or on the same forage diet but complemented with 5 kg/day of concentrate since their first calving. During 2 days, the gaseous exchange of the animals was quantified in open-circuit respiration chambers, followed by an 8-day period of feed, faeces, urine and milk collection. Daily amounts and energy contents were used to calculate complete energy balances. Age and feeding regime effects were analysed by parametric regression analysis where BW, milk yield and hay proportion in forage as consumed were considered as covariates. Relative to intake of gross energy, the availability of metabolizable energy (ME) increased with age. This was not the result of an increasing energy digestibility, but of proportionately lower energy losses with methane (following a curvilinear relationship with the greatest losses in middle-aged cows) and urine (continuously declining). The efficiency of utilization of ME for milk production (k l) increased with age. Potential reasons include an increase in the propionate-to-acetate ratio in the rumen because of a shift away from fibre degradation and methane formation as well as lower urine energy losses. The greater k l allowed older cows to accrete more energy reserves in the body. As expected, offering concentrate enhanced digestibility, metabolizability and metabolic utilization of energy. Age and feeding regime did not interact significantly. In conclusion, older cows seem to have digestive and metabolic strategies to use dietary energy to a certain degree more efficiently than younger cows.


Assuntos
Bovinos/metabolismo , Bovinos/fisiologia , Digestão , Metabolismo Energético , Leite/metabolismo , Fatores Etários , Ração Animal/análise , Animais , Dieta/veterinária , Fibras na Dieta/metabolismo , Feminino , Lactação , Metano/metabolismo , Rúmen/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA