Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Exp Physiol ; 105(11): 1960-1970, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32857874

RESUMO

NEW FINDINGS: What is the central question of this study? Do highly trained male endurance athletes who develop exercise-induced arterial hypoxaemia (EIAH) demonstrate reduced peripheral chemoresponsiveness during exercise? What is the main finding and its importance? Those with the lowest arterial saturation during exercise have a smaller ventilatory response to hypercapnia during exercise. There was no significant relationship between the hyperoxic ventilatory response and EIAH. The findings suggest that peripheral chemoresponsiveness to hypercapnia during exercise could play a role in the development of EIAH. The findings improve our understanding of the mechanisms that contribute to EIAH. ABSTRACT: Exercise-induced arterial hypoxaemia (EIAH) is characterized by a decrease in arterial oxygen tension and/or saturation during whole-body exercise, which may in part result from inadequate alveolar ventilation. However, the role of peripheral chemoresponsiveness in the development of EIAH is not well established. We hypothesized that those with the most severe EIAH would have an attenuated ventilatory response to hyperoxia and hypercapnia during exercise. To evaluate this, on separate days, we measured ventilatory sensitivity to hyperoxia and separately hypercapnia at rest and during three different exercise intensities (25, 50% of V̇O2max and ventilatory threshold (∼67% of V̇O2max )) in 12 males cyclists ( V̇O2max  = 66.6 ± 4.7 ml kg-1  min-1 ). Subjects were divided into two groups based on their end-exercise arterial oxygen saturation (ear oximetry, SpO2 ): a normal oxyhaemoglobin saturation group (NOS, SpO2  = 93.4 ± 0.4%, n = 5) and a low oxyhaemoglobin saturation group (LOS, SpO2  = 89.9 ± 0.9%, n = 7). There was no difference in V̇O2max (66.4 ± 2.9 vs. 66.8 ± 6.0 ml kg-1  min-1 , respectively, P = 0.9), peak ventilation during maximal exercise (182 ± 15 vs. 197 ± 32 l min-1 , respectively, P = 0.36) or ventilatory response to hyperoxia (P = 0.98) at any exercise intensity between NOS and LOS groups. However, those in the LOS group had a significantly lower ventilatory response to hypercapnia (P = 0.004, (η2  = 0.18). There was also a significant relationship between the mean hypercapnic response and end-exercise SpO2 (r = 0.75, P = 0.009) but not between the mean hyperoxic response and end-exercise SpO2 (r = 0.21, P = 0.51). A blunted hypercapnic ventilatory response may contribute to EIAH in highly trained men due to a failure to increase ventilation sufficiently to offset exercise-induced gas exchange impairments.


Assuntos
Exercício Físico , Consumo de Oxigênio , Atletas , Exercício Físico/fisiologia , Humanos , Hipercapnia , Hipóxia , Masculino , Oxigênio , Consumo de Oxigênio/fisiologia
2.
J Appl Physiol (1985) ; 129(2): 410-418, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32702273

RESUMO

Smaller airways increase resistance and the propensity toward turbulent airflow, both of which are thought to be mechanisms behind greater resistive and total work of breathing (Wb) in females. Previous research examining the effect of airway size on the Wb between the sexes is limited by the inability to experimentally manipulate airway size. Heliox (21% oxygen, balance helium) is less dense than room air, which reduces turbulent airflow and airway resistance. The purpose of our study was to utilize heliox inspiration in women to provide a stimulus physiologically similar to increasing airway size. We hypothesized that when breathing heliox women would have a Wb similar to men breathing room air. Eighteen healthy young subjects (n = 9 women, 9 men) completed two maximal exercise tests on a cycle ergometer over 2 days. Subjects breathed room air for one test and heliox for the other. Wb was assessed with an esophageal balloon catheter. During the room air trial, when ventilations were >65 L/min, women had a significantly greater Wb compared with men (P < 0.05). The greater Wb in women was due to greater resistance to turbulent flow. For both sexes, breathing heliox resulted in increased expiratory flow (+132 ± 18% of room air), an elimination of expiratory flow limitation, and a reduction in Wb (69 ± 12% of room air) (all P < 0.05). When the women were breathing heliox, Wb was not different from that in the men breathing room air. Our findings support the idea that the smaller conducting airways in females are responsible for a greater total and resistive Wb.NEW & NOTEWORTHY When healthy young women breathe heliox gas during exercise, their work of breathing is not different from men breathing room air. Heliox inspiration reduces airway resistance and promotes laminar flow, which is a physiologically similar effect of increasing airway size. Our findings provide experimental evidence that smaller airways in women are responsible for the greater work of breathing during exercise.


Assuntos
Hélio , Trabalho Respiratório , Exercício Físico , Feminino , Humanos , Masculino , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA