Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 325(3): G251-G264, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37461848

RESUMO

Manganese (Mn) is essential but neurotoxic at elevated levels. Under physiological conditions, Mn is primarily excreted by the liver, with the intestines playing a secondary role. Recent analyses of tissue-specific Slc30a10 or Slc39a14 knockout mice (SLC30A10 and SLC39A14 are Mn transporters) revealed that, under physiological conditions: 1) excretion of Mn by the liver and intestines is a major pathway that regulates brain Mn; and surprisingly, 2) the intestines compensate for loss of hepatic Mn excretion in controlling brain Mn. The unexpected importance of the intestines in controlling physiological brain Mn led us to determine the role of hepatic and intestinal Mn excretion in regulating brain Mn during elevated Mn exposure. We used liver- or intestine-specific Slc30a10 knockout mice as models to inhibit hepatic or intestinal Mn excretion. Compared with littermates, both knockout strains exhibited similar increases in brain Mn after elevated Mn exposure in early or later life. Thus, unlike physiological conditions, both hepatic and intestinal Mn excretion are required to control brain Mn during elevated Mn exposure. However, brain Mn levels of littermates and both knockout strains exposed to elevated Mn only in early life were normalized in later life. Thus, hepatic and intestinal Mn excretion play compensatory roles in clearing brain Mn accumulated by early life Mn exposure. Finally, neuromotor assays provided evidence consistent with a role for hepatic and intestinal Mn excretion in functionally modulating Mn neurotoxicity during Mn exposure. Put together, these findings substantially enhance understanding of the regulation of brain Mn by excretion.NEW & NOTEWORTHY This article shows that, in contrast with expectations from prior studies and physiological conditions, excretion of manganese by the intestines and liver is equally important in controlling brain manganese during human-relevant manganese exposure. The results provide foundational insights about the interorgan mechanisms that control brain manganese homeostasis at the organism level and have important implications for the development of therapeutics to treat manganese-induced neurological disease.


Assuntos
Proteínas de Transporte de Cátions , Manganês , Camundongos , Animais , Humanos , Manganês/toxicidade , Proteínas de Transporte de Cátions/metabolismo , Fígado/metabolismo , Camundongos Knockout , Encéfalo/metabolismo
2.
Am J Pathol ; 192(3): 484-502, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34896073

RESUMO

Leptin is an adipokine with roles in food intake and energy metabolism through its actions on neurons in the hypothalamus. The role of leptin in obesity and cardiovascular disorders is well documented. However, its influence on liver conditions such as cholestasis is poorly understood. The effects of exogenous leptin and leptin-neutralizing antibody on biliary hyperplasia, hepatic fibrosis, and inflammation in the multidrug resistance protein 2 knockout (Mdr2KO) mouse model of cholestasis were assessed by quantifying markers specific for cholangiocytes, activated hepatic stellate cells (HSCs), and cytokines. Serum and hepatic leptin were increased in Mdr2KO mice compared with FVB/NJ (FVBN) controls, and exogenous leptin enhanced biliary hyperplasia and liver fibrosis in Mdr2KO and FVBN mice. Leptin administration increased hepatic expression of C-C motif chemokine ligand 2 and IL-6 in Mdr2KO mice. In contrast, leptin-neutralizing antibody reduced intrahepatic bile duct mass and decreased HSC activation in Mdr2KO mice compared with FVBN controls. Sex-related differences were noted, with female Mdr2KO mice having more leptin than males. In cholangiocytes and LX2 cells in vitro, leptin increased phosphorylated Akt and stimulated cell proliferation. Leptin receptor siRNA and inhibitors of Akt phosphorylation impaired leptin-induced cell proliferation and proinflammatory cytokines. The current data suggest that leptin is abnormally increased in cholestatic mice, and excess leptin increases ductular reaction, hepatic fibrosis, and inflammation via leptin receptor-mediated phosphorylation of Akt in cholangiocytes and HSCs.


Assuntos
Colestase , Receptores para Leptina , Animais , Anticorpos Neutralizantes , Colestase/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Células Estreladas do Fígado/metabolismo , Hiperplasia/patologia , Inflamação/patologia , Leptina/metabolismo , Leptina/farmacologia , Fígado/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores para Leptina/metabolismo
3.
Anesth Analg ; 137(2): 313-321, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729754

RESUMO

Pediatric cardiac anesthesiology has developed as a subsubspecialty of anesthesiology over the past 70 years. The evolution of this specialty has led to the establishment in 2005 of a dedicated professional society, the Congenital Cardiac Anesthesia Society (CCAS). By 2010, multiple training pathways for pediatric cardiac anesthesia emerged. Eight programs in the United States offered advanced pediatric cardiac anesthesia with variable duration, ranging from 3 to 12 months. Other programs offered a combined fellow/staff position for 1 year. The need for a standardized training pathway was recognized by the Pediatric Anesthesia Leadership Council (PALC) and CCAS in 2014. Specifically, it was recommended that pediatric cardiac anesthesiology be a second, 12-month advanced fellowship following pediatric anesthesia to acquire skills unique from those acquired during a pediatric anesthesia fellowship. This was reiterated in 2018, when specific pediatric cardiac anesthesia training milestones were developed through consensus by the CCAS leadership. However, given the continuous increasing demand for well-trained pediatric cardiac anesthesiologists, it is essential that a supply of comprehensively trained physicians exists. High-quality training programs are therefore necessary to ensure excellent clinical care and enhanced patient safety. Currently, there are 23 programs offering one or more positions for 1-year pediatric cardiac anesthesia fellowship. Due to the diverse curriculum and evaluation process, formalization of the training with accreditation through the Accreditation Council for Graduate Medical Education (ACGME) was the obvious next step. Initial inquiry started in April 2020. The ACGME recognized pediatric cardiac anesthesia as a subsubspecialty in February 2021. The program requirements and milestones for the 1-year fellowship training were developed in 2021 and 2022. This special article reviews the history of pediatric cardiac anesthesia training, the ACGME application process, the development of program requirements and milestones, and implementation.


Assuntos
Anestesia , Anestesiologia , Cardiopatias , Humanos , Estados Unidos , Criança , Anestesiologia/educação , Bolsas de Estudo , Educação de Pós-Graduação em Medicina , Anestesiologistas , Acreditação
4.
Am J Pathol ; 190(2): 347-357, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31734229

RESUMO

Severe hepatic insults can lead to acute liver failure and hepatic encephalopathy (HE). Transforming growth factor ß1 (TGFß1) has been shown to contribute to HE during acute liver failure; however, TGFß1 must be activated to bind its receptor and generate downstream effects. One protein that can activate TGFß1 is thrombospondin-1 (TSP-1). Therefore, the aim of this study was to assess TSP-1 during acute liver failure and HE pathogenesis. C57Bl/6 or TSP-1 knockout (TSP-1-/-) mice were injected with azoxymethane (AOM) to induce acute liver failure and HE. Liver damage, neurologic decline, and molecular analyses of TSP-1 and TGFß1 signaling were performed. AOM-treated mice had increased TSP-1 and TGFß1 mRNA and protein expression in the liver. TSP-1-/- mice administered AOM had reduced liver injury as assessed by histology and serum transaminase levels compared with C57Bl/6 AOM-treated mice. TSP-1-/- mice treated with AOM had reduced TGFß1 signaling that was associated with less hepatic cell death as assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining and cleaved caspase 3 expression. TSP-1-/- AOM-treated mice had a reduced rate of neurologic decline, less cerebral edema, and a decrease in microglia activation in comparison with C57Bl/6 mice treated with AOM. Taken together, TSP-1 is an activator of TGFß1 signaling during AOM-induced acute liver failure and contributes to both liver pathology and HE progression.


Assuntos
Modelos Animais de Doenças , Encefalopatia Hepática/patologia , Falência Hepática Aguda/patologia , Trombospondina 1/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Azoximetano/toxicidade , Carcinógenos/toxicidade , Morte Celular , Encefalopatia Hepática/etiologia , Encefalopatia Hepática/metabolismo , Falência Hepática Aguda/etiologia , Falência Hepática Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
5.
Am J Pathol ; 190(3): 586-601, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31953035

RESUMO

Galanin (Gal) is a peptide with a role in neuroendocrine regulation of the liver. In this study, we assessed the role of Gal and its receptors, Gal receptor 1 (GalR1) and Gal receptor 2 (GalR2), in cholangiocyte proliferation and liver fibrosis in multidrug resistance protein 2 knockout (Mdr2KO) mice as a model of chronic hepatic cholestasis. The distribution of Gal, GalR1, and GalR2 in specific liver cell types was assessed by laser-capture microdissection and confocal microscopy. Galanin immunoreactivity was detected in cholangiocytes, hepatic stellate cells (HSCs), and hepatocytes. Cholangiocytes expressed GalR1, whereas HSCs and hepatocytes expressed GalR2. Strategies were used to either stimulate or block GalR1 and GalR2 in FVB/N (wild-type) and Mdr2KO mice and measure biliary hyperplasia and hepatic fibrosis by quantitative PCR and immunostaining of specific markers. Galanin treatment increased cholangiocyte proliferation and fibrogenesis in both FVB/N and Mdr2KO mice. Suppression of GalR1, GalR2, or both receptors in Mdr2KO mice resulted in reduced bile duct mass and hepatic fibrosis. In vitro knockdown of GalR1 in cholangiocytes reduced α-smooth muscle actin expression in LX-2 cells treated with cholangiocyte-conditioned media. A GalR2 antagonist inhibited HSC activation when Gal was administered directly to LX-2 cells, but not via cholangiocyte-conditioned media. These data demonstrate that Gal contributes not only to cholangiocyte proliferation but also to liver fibrogenesis via the coordinate activation of GalR1 in cholangiocytes and GalR2 in HSCs.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Colestase/metabolismo , Galanina/metabolismo , Cirrose Hepática/metabolismo , Receptor Tipo 1 de Galanina/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Animais , Ductos Biliares/metabolismo , Proliferação de Células , Colestase/patologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Galanina/genética , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Camundongos , Camundongos Knockout , Receptor Tipo 1 de Galanina/genética , Receptor Tipo 2 de Galanina/genética , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
6.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825239

RESUMO

Bile acids are commonly known as digestive agents for lipids. The mechanisms of bile acids in the gastrointestinal track during normal physiological conditions as well as hepatic and cholestatic diseases have been well studied. Bile acids additionally serve as ligands for signaling molecules such as nuclear receptor Farnesoid X receptor and membrane-bound receptors, Takeda G-protein-coupled bile acid receptor and sphingosine-1-phosphate receptor 2. Recent studies have shown that bile acid signaling may also have a prevalent role in the central nervous system. Some bile acids, such as tauroursodeoxycholic acid and ursodeoxycholic acid, have shown neuroprotective potential in experimental animal models and clinical studies of many neurological conditions. Alterations in bile acid metabolism have been discovered as potential biomarkers for prognosis tools as well as the expression of various bile acid receptors in multiple neurological ailments. This review explores the findings of recent studies highlighting bile acid-mediated therapies and bile acid-mediated signaling and the roles they play in neurodegenerative and neurological diseases.


Assuntos
Ácidos e Sais Biliares/metabolismo , Encéfalo/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Humanos , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Doenças Retinianas/metabolismo , Transdução de Sinais
7.
J Neuroinflammation ; 16(1): 69, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940161

RESUMO

BACKGROUND: Acute liver failure resulting from drug-induced liver injury can lead to the development of neurological complications called hepatic encephalopathy (HE). Hepatic transforming growth factor beta 1 (TGFß1) is upregulated due to liver failure in mice and inhibiting circulating TGFß reduced HE progression. However, the specific contributions of TGFß1 on brain cell populations and neuroinflammation during HE are not known. Therefore, the aim of this study was to characterize hepatic and brain TGFß1 signaling during acute liver failure and its contribution to HE progression using a combination of pharmacological and genetic approaches. METHODS: C57Bl/6 or neuron-specific transforming growth factor beta receptor 2 (TGFßR2) null mice (TGFßR2ΔNeu) were treated with azoxymethane (AOM) to induce acute liver failure and HE. The activity of circulating TGFß1 was inhibited in C57Bl/6 mice via injection of a neutralizing antibody against TGFß1 (anti-TGFß1) prior to AOM injection. In all mouse treatment groups, liver damage, neuroinflammation, and neurological deficits were assessed. Inflammatory signaling between neurons and microglia were investigated in in vitro studies through the use of pharmacological inhibitors of TGFß1 signaling in HT-22 and EOC-20 cells. RESULTS: TGFß1 was expressed and upregulated in the liver following AOM injection. Pharmacological inhibition of TGFß1 after AOM injection attenuated neurological decline, microglia activation, and neuroinflammation with no significant changes in liver damage. TGFßR2ΔNeu mice administered AOM showed no effect on liver pathology but significantly reduced neurological decline compared to control mice. Microglia activation and neuroinflammation were attenuated in mice with pharmacological inhibition of TGFß1 or in TGFßR2ΔNeu mice. TGFß1 increased chemokine ligand 2 (CCL2) and decreased C-X3-C motif ligand 1 (CX3CL1) expression in HT-22 cells and reduced interleukin-1 beta (IL-1ß) expression, tumor necrosis factor alpha (TNFα) expression, and phagocytosis activity in EOC-20 cells. CONCLUSION: Increased circulating TGFß1 following acute liver failure results in activation of neuronal TGFßR2 signaling, driving neuroinflammation and neurological decline during AOM-induced HE.


Assuntos
Córtex Cerebral/patologia , Encefalopatia Hepática/etiologia , Falência Hepática Aguda/complicações , Falência Hepática Aguda/patologia , Neurônios/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/deficiência , Fator de Crescimento Transformador beta1/sangue , Animais , Anticorpos/uso terapêutico , Azoximetano/toxicidade , Benzamidas/farmacologia , Carcinógenos/toxicidade , Linhagem Celular Transformada , Modelos Animais de Doenças , Encefalopatia Hepática/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/etiologia , Isoquinolinas/farmacologia , Fígado/metabolismo , Fígado/patologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fagocitose/genética , Pirazóis/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/imunologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
8.
Am J Pathol ; 187(4): 819-830, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28196718

RESUMO

During the course of cholestatic liver diseases, mitotically dormant cholangiocytes proliferate and subsequently acquire a neuroendocrine phenotype. Galanin is a neuroendocrine factor responsible for regulation of physiological responses, such as feeding behavior and mood, and has been implicated in the development of fatty liver disease, although its role in biliary hyperplasia is unknown. Biliary hyperplasia was induced in rats via bile duct ligation (BDL) surgery, and galanin was increased in serum and liver homogenates from BDL rats. Treatment of sham and BDL rats with recombinant galanin increased cholangiocyte proliferation and intrahepatic biliary mass, liver damage, and inflammation, whereas blocking galanin expression with specific vivo-morpholino sequences inhibited hyperplastic cholangiocyte proliferation, liver damage, inflammation, and subsequent fibrosis. The proliferative effects of galanin were via activation of galanin receptor 1 expressed specifically on cholangiocytes and were associated with an activation of extracellular signal-regulated kinase 1/2, and ribosomal S6 kinase 1 signal transduction pathways and subsequent increase in cAMP responsive element binding protein DNA-binding activity and induction of Yes-associated protein expression. Strategies to inhibit extracellular signal-regulated kinase 1/2, ribosomal S6 kinase 1, or cAMP responsive element binding protein DNA-binding activity prevented the proliferative effects of galanin. Taken together, these data suggest that targeting galanin signaling may be effective for the maintenance of biliary mass during cholestatic liver diseases.


Assuntos
Ductos Biliares/patologia , Colestase/metabolismo , Colestase/patologia , Galanina/metabolismo , Regulação para Cima , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , DNA/metabolismo , Inflamação/patologia , Ligadura , Masculino , Camundongos , Morfolinos/farmacologia , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de Galanina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteínas de Sinalização YAP
9.
Gene Expr ; 18(3): 171-185, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-29895352

RESUMO

Acute liver failure is a devastating consequence of hepatotoxic liver injury that can lead to the development of hepatic encephalopathy. There is no consensus on the best model to represent these syndromes in mice, and therefore the aim of this study was to classify hepatic and neurological consequences of azoxymethane- and thioacetamide-induced liver injury. Azoxymethane-treated mice were euthanized at time points representing absence of minor and significant stages of neurological decline. Thioacetamide-treated mice had tissue collected at up to 3 days following daily injections. Liver histology, serum chemistry, bile acids, and cytokine levels were measured. Reflexes, grip strength measurement, and ataxia were calculated for all groups. Brain ammonia, bile acid levels, cerebral edema, and neuroinflammation were measured. Finally, in vitro and in vivo assessments of blood-brain barrier function were performed. Serum transaminases and liver histology demonstrate that both models generated hepatotoxic liver injury. Serum proinflammatory cytokine levels were significantly elevated in both models. Azoxymethane-treated mice had progressive neurological deficits, while thioacetamide-treated mice had inconsistent neurological deficits. Bile acids and cerebral edema were increased to a higher degree in azoxymethane-treated mice, while cerebral ammonia and neuroinflammation were greater in thioacetamide-treated mice. Blood-brain barrier permeability exists in both models but was likely not due to direct toxicity of azoxymethane or thioacetamide on brain endothelial cells. In conclusion, both models generate acute liver injury and hepatic encephalopathy, but the requirement of a single injection and the more consistent neurological decline make azoxymethane treatment a better model for acute liver failure with hepatic encephalopathy.


Assuntos
Azoximetano/toxicidade , Modelos Animais de Doenças , Encefalopatia Hepática/patologia , Tioacetamida/toxicidade , Animais , Biomarcadores/sangue , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatia Hepática/etiologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Am J Physiol Gastrointest Liver Physiol ; 313(5): G410-G418, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28751425

RESUMO

Melatonin is a hormone produced by the pineal gland with increased circulating levels shown to inhibit biliary hyperplasia and fibrosis during cholestatic liver injury. Melatonin also has the capability to suppress the release of hypothalamic gonadotropin-releasing hormone (GnRH), a hormone that promotes cholangiocyte proliferation when serum levels are elevated. However, the interplay and contribution of neural melatonin and GnRH to cholangiocyte proliferation and fibrosis in bile duct-ligated (BDL) rats have not been investigated. To test this, cranial levels of melatonin were increased by implanting osmotic minipumps that performed an intracerebroventricular (ICV) infusion of melatonin or saline for 7 days starting at the time of BDL. Hypothalamic GnRH mRNA and cholangiocyte secretion of GnRH and melatonin were assessed. Cholangiocyte proliferation and fibrosis were measured. Primary human hepatic stellate cells (HSCs) were treated with cholangiocyte supernatants, GnRH, or the GnRH receptor antagonist cetrorelix acetate, and cell proliferation and fibrosis gene expression were assessed. Melatonin infusion reduced hypothalamic GnRH mRNA expression and led to decreased GnRH and increased melatonin secretion from cholangiocytes. Infusion of melatonin was found to reduce hepatic injury, cholangiocyte proliferation, and fibrosis during BDL-induced liver injury. HSCs supplemented with BDL cholangiocyte supernatant had increased proliferation, and this increase was reversed when HSCs were supplemented with supernatants from melatonin-infused rats. GnRH stimulated fibrosis gene expression in HSCs, and this was reversed by cetrorelix acetate cotreatment. Increasing bioavailability of melatonin in the brain may improve outcomes during cholestatic liver disease.NEW & NOTEWORTHY We have previously demonstrated that GnRH is expressed in cholangiocytes and promotes their proliferation during cholestasis. In addition, dark therapy, which increases melatonin, reduced cholangiocyte proliferation and fibrosis during cholestasis. This study expands these findings by investigating neural GnRH regulation by melatonin during BDL-induced cholestasis by infusing melatonin into the brain. Melatonin infusion reduced cholangiocyte proliferation and fibrosis, and these effects are due to GNRH receptor 1-dependent paracrine signaling between cholangiocytes and hepatic stellate cells.


Assuntos
Ductos Biliares , Colestase , Hormônio Liberador de Gonadotropina , Cirrose Hepática , Melatonina , Glândula Pineal/fisiologia , Animais , Ductos Biliares/efeitos dos fármacos , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Proliferação de Células/efeitos dos fármacos , Depressores do Sistema Nervoso Central/administração & dosagem , Depressores do Sistema Nervoso Central/sangue , Depressores do Sistema Nervoso Central/metabolismo , Colestase/complicações , Colestase/metabolismo , Modelos Animais de Doenças , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Antagonistas de Hormônios/farmacologia , Humanos , Hiperplasia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Melatonina/administração & dosagem , Melatonina/sangue , Melatonina/metabolismo , Ratos , Receptores LHRH/antagonistas & inibidores
11.
Am J Pathol ; 186(2): 312-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26683664

RESUMO

Hepatic encephalopathy is a serious neurological complication of liver failure. Serum bile acids are elevated after liver damage and may disrupt the blood-brain barrier and enter the brain. Our aim was to assess the role of serum bile acids in the neurological complications after acute liver failure. C57Bl/6 or cytochrome p450 7A1 knockout (Cyp7A1(-/-)) mice were fed a control, cholestyramine-containing, or bile acid-containing diet before azoxymethane (AOM)-induced acute liver failure. In parallel, mice were given an intracerebroventricular infusion of farnesoid X receptor (FXR) Vivo-morpholino before AOM injection. Liver damage, neurological decline, and molecular analyses of bile acid signaling were performed. Total bile acid levels were increased in the cortex of AOM-treated mice. Reducing serum bile acids via cholestyramine feeding or using Cyp7A1(-/-) mice reduced bile acid levels and delayed AOM-induced neurological decline, whereas cholic acid or deoxycholic acid feeding worsened AOM-induced neurological decline. The expression of bile acid signaling machinery apical sodium-dependent bile acid transporter, FXR, and small heterodimer partner increased in the frontal cortex, and blocking FXR signaling delayed AOM-induced neurological decline. In conclusion, circulating bile acids may play a pathological role during hepatic encephalopathy, although precisely how they dysregulate normal brain function is unknown. Strategies to minimize serum bile acid concentrations may reduce the severity of neurological complications associated with liver failure.


Assuntos
Ácidos e Sais Biliares/metabolismo , Doenças do Sistema Nervoso Central/etiologia , Falência Hepática Aguda/metabolismo , Transdução de Sinais/fisiologia , Animais , Barreira Hematoencefálica/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Ácido Cólico/metabolismo , Modelos Animais de Doenças , Falência Hepática Aguda/complicações , Falência Hepática Aguda/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Transdução de Sinais/genética , Simportadores/genética , Simportadores/metabolismo
12.
Global Health ; 13(1): 36, 2017 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-28646878

RESUMO

BACKGROUND: A country will trust, value, and use, its health information system (HIS) to the extent it has had a role in its creation and maintenance. A sense of ownership contributes in turn to the long-term sustainability of the HIS, and thus the country's ability to monitor and evaluate population health and health services. To facilitate progress toward greater ownership, we developed and tested a tool to measure the country's ownership of its monitoring and evaluation (M&E) system. METHODS: Through a systematic review of the literature, we identified four dimensions of country ownership of an M&E system: partnership, commitment and responsibility, capacity, and accountability. We identified relevant indicators of the dimensions already in use in other tools used to assess M&E systems. We tested the data collection tool with 95 stakeholders of the Tanzanian HIS for HIV/AIDS control. RESULTS: We identified 56 items that addressed elements of the four dimensions. The respondents found our tool for assessing country ownership of an HIS to be clear and relevant, leading to the identification of important issues to be discussed. For example, all stakeholder groups affirmed that the Tanzanian Commission for AIDS is "playing a leadership role in addressing HIV through collaborative partnerships and work across borders to achieve greater impact." While many respondents disagreed with the statement, "There is an adequate number of government monitoring and evaluation posts at the sub-national level." CONCLUSIONS: Stakeholders found the M&E country ownership tool to address relevant questions clearly. It enabled them to identify successes and challenges within four dimensions of country ownership. It thus holds the potential to lead to an agenda for strengthening country ownership. If implemented every few years, the tool can provide a means of monitoring progress through a set of standardized indicators. As country ownership of M&E increases, so will the long-term sustainability of the HIS.


Assuntos
Sistemas de Informação em Saúde , Propriedade , Atenção à Saúde , Serviços de Saúde , Humanos
13.
Pediatr Cardiol ; 38(8): 1627-1632, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28871366

RESUMO

Pulmonary atresia with intact ventricular septum (PA/IVS) is a rare cardiac congenital lesion characterized by imperforate pulmonary valve, intact ventricular septum, and atrial level shunt. Although different management strategies to establish a source of non-ductal dependent pulmonary blood flow have been described, studies have not assessed the relationship between the therapeutic approach, patient characteristics, and outcomes. The purpose of this study was to identify predictors of mortality for patients with PA/IVS. Neonates and children with PA/IVS were identified through analysis of the 2012 Kids' Inpatient Database of the Healthcare Cost and Utilization Project. Hospital admissions that included a cardiac catheterization and/or surgical procedure were analyzed to identify demographics, co-morbidities, and outcomes. We identified 508 patients with PA/IVS with hospital admissions that included cardiac catheterization (n = 165), surgical procedures (n = 273), or both (n = 70). The incidence of mortality in this cohort was 6.69% (34/508). Univariable analysis demonstrated that age less than 12 months (p < 0.001), non-elective admission (p < 0.001), AKI (p = 0.001), sepsis (p = 0.002), and the use of ECMO (p < 0.001) were associated with an increased risk of mortality, while no difference was observed for the type of therapeutic approach (p = 0.498). These variables were used in a multivariable logistic regression analysis to develop the predictive model for mortality. Age less than 12 months, non-elective admission, and the use of ECMO in children with PA/IVS were predictors for mortality. Interestingly, the type of therapeutic approach did not influence mortality, which suggests that patient characteristics other than the method chosen to provide pulmonary blood flow determine mortality.


Assuntos
Cardiopatias Congênitas/mortalidade , Atresia Pulmonar/mortalidade , Adolescente , Cateterismo Cardíaco/efeitos adversos , Criança , Pré-Escolar , Bases de Dados Factuais , Feminino , Cardiopatias Congênitas/cirurgia , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Admissão do Paciente/estatística & dados numéricos , Atresia Pulmonar/cirurgia , Curva ROC , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida , Resultado do Tratamento , Estados Unidos , Septo Interventricular
14.
Int J Mol Sci ; 18(11)2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29125588

RESUMO

Hepatic cholestasis is associated with a significant suppression of the hypothalamus-pituitary-adrenal axis (HPA). In the present study, we tested the hypothesis that activation of the HPA axis by corticosterone treatment can reverse liver inflammation and fibrosis in a multidrug resistance protein 2 knockout (MDR2KO) transgenic mouse model of hepatic cholestasis. Friend Virus B NIH-Jackson (FVBN) control and MDR2KO male and female mice were treated with vehicle or corticosterone for two weeks, then serum and liver analyses of hepatic cholestasis markers were performed. Indicators of inflammation, such as increased numbers of macrophages, were determined. MDR2KO mice had lower corticotropin releasing hormone and corticosterone levels than FVBN controls in the serum. There was a large accumulation of CD68 and F4/80 macrophages in MDR2KO mice livers, which indicated greater inflammation compared to FVBNs, an effect reversed by corticosterone treatment. Intrahepatic biliary duct mass, collagen deposition and alpha smooth muscle actin (αSMA) were found to be much higher in livers of MDR2KO mice than in controls; corticosterone treatment significantly decreased these fibrosis markers. When looking at the gender-specific response to corticosterone treatment, male MDR2KO mice tended to have a more pronounced reversal of liver fibrosis than females treated with corticosterone.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Glucocorticoides/administração & dosagem , Inflamação/genética , Cirrose Hepática/genética , Animais , Corticosterona/sangue , Hormônio Liberador da Corticotropina/sangue , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Inflamação/sangue , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/sangue , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Knockout , Sistema Hipófise-Suprarrenal/metabolismo , Caracteres Sexuais , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
15.
J Neuroinflammation ; 13(1): 198, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27561705

RESUMO

BACKGROUND: Acute liver failure is associated with numerous systemic consequences including neurological dysfunction, termed hepatic encephalopathy, which contributes to mortality and is a challenge to manage in the clinic. During hepatic encephalopathy, microglia activation and neuroinflammation occur due to dysregulated cell signaling and an increase of toxic metabolites in the brain. Fractalkine is a chemokine that is expressed primarily in neurons and through signaling with its receptor CX3CR1 on microglia, leads to microglia remaining in a quiescent state. Fractalkine is often suppressed during neuropathies that are characterized by neuroinflammation. However, the expression and subsequent role of fractalkine on microglia activation and the pathogenesis of hepatic encephalopathy due to acute liver failure is unknown. METHODS: Hepatic encephalopathy was induced in mice via injection of azoxymethane (AOM) or saline for controls. Subsets of these mice were implanted with osmotic minipumps that infused soluble fractalkine or saline into the lateral ventricle of the brain. Neurological decline and the latency to coma were recorded in these mice, and brain, serum, and liver samples were collected. Neurons or microglia were isolated from whole brain samples using immunoprecipitation. Liver damage was assessed using hematoxylin and eosin staining and by measuring serum liver enzyme concentrations. Fractalkine and CX3CR1 expression were assessed by real-time PCR, and proinflammatory cytokine expression was assessed using ELISA assays. RESULTS: Following AOM administration, fractalkine expression is suppressed in the cortex and in isolated neurons compared to vehicle-treated mice. CX3CR1 is suppressed in isolated microglia from AOM-treated mice. Soluble fractalkine infusion into the brain significantly reduced neurological decline in AOM-treated mice compared to saline-infused AOM-treated mice. Infusion of soluble fractalkine into AOM-treated mice reduced liver damage, lessened microglia activation, and suppressed expression of chemokine ligand 2, interleukin-6, and tumor necrosis factor alpha compared to saline-infused mice. CONCLUSIONS: These findings suggest that fractalkine-mediated signaling is suppressed in the brain following the development of hepatic encephalopathy. Supplementation of AOM-treated mice with soluble fractalkine led to improved outcomes, which identifies this pathway as a possible therapeutic target for the management of hepatic encephalopathy following acute liver injury.


Assuntos
Quimiocina CX3CL1/uso terapêutico , Encefalite/tratamento farmacológico , Encefalite/etiologia , Encefalopatia Hepática/complicações , Alanina Transaminase/sangue , Animais , Azoximetano/toxicidade , Bilirrubina/sangue , Proteínas de Ligação ao Cálcio/metabolismo , Carcinógenos/toxicidade , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Encefalite/patologia , Citometria de Fluxo , Encefalopatia Hepática/induzido quimicamente , Infusões Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Fosfopiruvato Hidratase/metabolismo
16.
J Neurochem ; 135(3): 565-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26179031

RESUMO

Hepatic encephalopathy (HE) is a serious neurological complication of acute and chronic liver failure. Expression of the neurosteroid/bile acid receptor Takeda G protein-coupled receptor 5 (TGR5) has been demonstrated in the brain and is thought to be neuroprotective. However, it is unknown how TGR5 signaling can influence the progression and associated neuroinflammation of HE. HE was induced in C57Bl/6 mice via intraperitoneal injection of azoxymethane (AOM) and tissue was collected throughout disease progression. TGR5 expression was elevated in the frontal cortex following AOM injection in mice. The cellular localization of TGR5 was found in both neurons and microglia in the cortex of C57Bl/6 mice. Central infusion of the TGR5 agonist, betulinic acid, prior to AOM injection delayed neurological decline, increased cortical cyclic adenosine monophosphate concentrations, reduced microglia activation and proliferation, and reduced proinflammatory cytokine production. Betulinic acid treatment in vitro reduced the neuronal expression of chemokine ligand 2, a chemokine previously demonstrated to contribute to HE pathogenesis. Lastly, treatment of the microglia cell line EOC-20 with conditioned media from betulinic acid-treated primary neurons decreased phagocytic activity and cytokine production. Together, these data identify that activation of TGR5, which is up-regulated during HE, alleviates neuroinflammation and improves outcomes of AOM-treated mice through neuron and microglia paracrine signaling.


Assuntos
Encefalopatia Hepática/metabolismo , Encefalopatia Hepática/prevenção & controle , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Inflamação/metabolismo , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Triterpenos Pentacíclicos , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais/efeitos dos fármacos , Triterpenos/administração & dosagem , Ácido Betulínico
18.
Sci Rep ; 14(1): 14981, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951546

RESUMO

Gulf War Illness (GWI) describes a series of symptoms suffered by veterans of the Gulf war, consisting of cognitive, neurological and gastrointestinal dysfunctions. Two chemicals associated with GWI are the insecticide permethrin (PER) and the nerve gas prophylactic pyridostigmine-bromide (PB). In this study we assessed the effects of PER and PB exposure on the pathology and subsequent alcohol (EtOH)-induced liver injury, and the influence of a macrophage depletor, PLX3397, on EtOH-induced liver damage in PER/PB-treated mice. Male C57BL/6 mice were injected daily with vehicle or PER/PB for 10 days, followed by 4 months recovery, then treatment with PLX3397 and a chronic-plus-single-binge EtOH challenge for 10 days. PER/PB exposure resulted in the protracted increase in liver transaminases in the serum and induced chronic low-level microvesicular steatosis and inflammation in GWI vs Naïve mice up to 4 months after cessation of exposure. Furthermore, prior exposure to PER/PB also resulted in exacerbated response to EtOH-induced liver injury, with enhanced steatosis, ductular reaction and fibrosis. The enhanced EtOH-induced liver damage in GWI-mice was attenuated by strategies designed to deplete macrophages in the liver. Taken together, these data suggest that exposure to GWI-related chemicals may alter the liver's response to subsequent ethanol exposure.


Assuntos
Etanol , Camundongos Endogâmicos C57BL , Síndrome do Golfo Pérsico , Brometo de Piridostigmina , Animais , Síndrome do Golfo Pérsico/induzido quimicamente , Síndrome do Golfo Pérsico/patologia , Masculino , Brometo de Piridostigmina/farmacologia , Camundongos , Etanol/efeitos adversos , Etanol/toxicidade , Permetrina/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Inseticidas/toxicidade , Inseticidas/efeitos adversos , Modelos Animais de Doenças
19.
Res Sq ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38313276

RESUMO

Gulf War Illness (GWI) describes a series of symptoms suffered by veterans of the Gulf war consisting of cognitive, neurological and gastrointestinal dysfunctions. Two chemicals associated with GWI are the insecticide permethrin (PER) and the nerve gas prophylactic pyridostigmine-bromide (PB). In this study we assessed the effects of PER and PB exposure on pathology and subsequent alcohol (EtOH)-induced liver injury, and the influence of a macrophage depletor, PLX3397, on EtOH-induced liver damage in PER/PB- treated mice. Male C57BL/6 mice were injected daily with vehicle or PER/PB for 10 days, followed by 4 months recovery, then treatment with PLX3397 and a chronic-plus-single-binge EtOH challenge for 10 days. PER/PB exposure resulted in the protracted increase in liver transaminases in the serum and induced chronic low-level microvesicular steatosis and inflammation in GWI vs Naïve mice up to 4 months after cessation of exposure. Furthermore, prior exposure to PER/PB also resulted in exacerbated response to EtOH-induced liver injury, with enhanced steatosis, ductular reaction and fibrosis. The enhanced EtOH-induced liver damage in GWI-mice was attenuated by strategies designed to deplete macrophages in the liver. Taken together, these data suggest that exposure to GWI-related chemicals may alter the liver's response to subsequent ethanol exposure.

20.
Matern Child Nutr ; 9(4): 483-98, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22233352

RESUMO

Several recent studies have supported relations between infant behaviour (alertness and responsiveness) and nutrition in addition to investigating infant behaviour within the context of changes in iron status over time. Existing research is typically limited to the investigation of the effects of a single vitamin or mineral, and no studies have been found that examined the influence that early alertness and responsiveness have on growth in early infancy, despite the fact that relations between behaviour and nutritional status may be bidirectional. The current study used a sample of Ethiopian infants and investigated anthropometrics, haemoglobin, the frequency of alertness and the frequency of responsiveness at 6 and 9 months of age. Six-month weight-for-age predicted 9-month frequency of alertness, while 6-month haemoglobin predicted 9-month frequency of responsiveness. Compared with responsive infants, non-responsive infants at 6 months remained more non-responsive at 9 months, although weight-for-age for both groups converged at 9 months. Results support relations between nutrition and behaviour (alertness and responsiveness) and provide evidence of a potentially useful tool (the Laboratory Temperament Assessment Battery) that was adapted to evaluate these relations in Ethiopia.


Assuntos
Desenvolvimento Infantil , Hemoglobinas/análise , Comportamento do Lactente , Fenômenos Fisiológicos da Nutrição do Lactente , Relações Interpessoais , Modelos Biológicos , Vigília , Biomarcadores/sangue , Países Desenvolvidos , Etiópia , Feminino , Humanos , Lactente , Comportamento do Lactente/etnologia , Fenômenos Fisiológicos da Nutrição do Lactente/etnologia , Estudos Longitudinais , Masculino , Avaliação Nutricional , Estado Nutricional , Saúde da População Rural/etnologia , Aumento de Peso/etnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA