Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(1): 133-143, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38054382

RESUMO

The aim of this study was to assess how transglutaminase (TG) impacts the microstructure, texture, and rheological properties of fermentation-induced pea protein emulsion gels. Additionally, the study examined the influence of storage time on the functional properties of these gels. Fermentation-induced pea protein gels were produced in the presence or absence of TG and stored for 1, 4, 8, 12, and 16 weeks. Texture analysis, rheological measurements, moisture content and microstructure evaluation with confocal laser scanning microscopy (CLSM) and 3D image analysis were conducted to explore the effects of TG on the structural and rheological properties of the fermented samples. The porosity of the protein networks in the pea gels decreased in the presence of TG, the storage modulus increased and the textural characteristics were significantly improved, resulting in harder and more springy gels. The gel porosity increased in gels with and without TG after storage but the effect of storage on textural and rheological properties was limited, indicating limited structural rearrangement once the fermentation-induced pea protein emulsion gels are formed. Greater coalescence was observed for oil droplets within the gel matrix after 16 weeks of storage in the absence of TG, consistent with these protein structures being weaker than the more structurally stable TG-treated gels. This study shows that TG treatment is a powerful tool to enhance the textural and rheological properties of fermentation-induced pea protein emulsion gels.


Assuntos
Proteínas de Ervilha , Proteínas de Ervilha/metabolismo , Emulsões/química , Fermentação , Transglutaminases/metabolismo , Géis/química , Reologia
2.
J Sci Food Agric ; 102(13): 5642-5652, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35368112

RESUMO

BACKGROUND: Sensory biometrics provide advantages for consumer tasting by quantifying physiological changes and the emotional response from participants, removing variability associated with self-reported responses. The present study aimed to measure consumers' emotional and physiological responses towards different commercial yoghurts, including dairy and plant-based yoghurts. The physiochemical properties of these products were also measured and linked with consumer responses. RESULTS: Six samples (Control, Coconut, Soy, Berry, Cookies and Drinkable) were evaluated for overall liking by n = 62 consumers using a nine-point hedonic scale. Videos from participants were recorded using the Bio-Sensory application during tasting to assess emotions and heart rate. Physicochemical parameters Brix, pH, density, color (L, a and b), firmness and near-infrared (NIR) spectroscopy were also measured. Principal component analysis and a correlation matrix were used to assess relationships between the measured parameters. Heart rate was positively related to firmness, yaw head movement and overall liking, which were further associated with the Cookies sample. Two machine learning regression models were developed using (i) NIR absorbance values as inputs to predict the physicochemical parameters (Model 1) and (ii) the outputs from Model 1 as inputs to predict consumers overall liking (Model 2). Both models presented very high accuracy (Model 1: R = 0.98; Model 2: R = 0.99). CONCLUSION: The presented methods were shown to be highly accurate and reliable with respect to their potential use by the industry to assess yoghurt quality traits and acceptability. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Preferências Alimentares , Iogurte , Comportamento do Consumidor , Tecnologia Digital , Preferências Alimentares/psicologia , Humanos , Paladar
3.
J Ind Microbiol Biotechnol ; 47(6-7): 449-464, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32507955

RESUMO

Cytochrome P450 enzymes catalyse reactions of significant industrial interest but are underutilised in large-scale bioprocesses due to enzyme stability, cofactor requirements and the poor aqueous solubility and microbial toxicity of typical substrates and products. In this work, we investigate the potential for preparative-scale N-demethylation of the opium poppy alkaloid noscapine by a P450BM3 (CYP102A1) mutant enzyme in a whole-cell biotransformation system. We identify and address several common limitations of whole-cell P450 biotransformations using this model N-demethylation process. Mass transfer into Escherichia coli cells was found to be a major limitation of biotransformation rate and an alternative Gram-positive expression host Bacillus megaterium provided a 25-fold improvement in specific initial rate. Two methods were investigated to address poor substrate solubility. First, a biphasic biotransformation system was developed by systematic selection of potentially biocompatible solvents and in silico solubility modelling using Hansen solubility parameters. The best-performing biphasic system gave a 2.3-fold improvement in final product titre compared to a single-phase system but had slower initial rates of biotransformation due to low substrate concentration in the aqueous phase. The second strategy aimed to improve aqueous substrate solubility using cyclodextrin and hydrophilic polymers. This approach provided a fivefold improvement in initial biotransformation rate and allowed a sixfold increase in final product concentration. Enzyme stability and cell viability were identified as the next parameters requiring optimisation to improve productivity. The approaches used are also applicable to the development of other pharmaceutical P450-mediated biotransformations.


Assuntos
Biotransformação , Sistema Enzimático do Citocromo P-450/metabolismo , Microbiologia Industrial/métodos , Noscapina/química , Bacillus megaterium/metabolismo , Catálise , Simulação por Computador , Ciclodextrinas/química , Desmetilação , Escherichia coli/metabolismo , Mutação , Compostos Orgânicos/metabolismo , Oxirredução , Polímeros/química , Solubilidade , Solventes
4.
Chem Soc Rev ; 46(10): 2705-2731, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28280815

RESUMO

Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).

5.
J Struct Biol ; 198(2): 82-91, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28400129

RESUMO

Chaplin E, is one of five self-assembling peptides secreted by Streptomyces coelicolor that assist aerial growth by lowering the surface tension of water. Although the surface activity of a mixture of chaplin peptides has observed to depend on pH, it is unclear how the solvent environment (i.e. pH) influences the structure, assembly and subsequent functionality of these individual peptides. In this study, the conformation and fibril forming propensity of the Chaplin E peptide was assessed as a function of pH using a combination of experimental measurements and molecular dynamics simulations. At an acidic pH of 3.0, Chaplin E retained a random coil structure, whereas at the isoelectric point of 6.7 or a basic pH of 10.0, Chaplin E rapidly formed amyloid fibrils rich in ß-sheet structure with high efficiency (>93%). Molecular dynamics simulations indicate the persistence of greater α-helical content at the N-terminus at high pH; this is likely partly due to the lack of electrostatic repulsion between residues His6 and Lys10. Since fibril formation was observed at high but not at low pH, we propose that the presence of an N-terminal α-helix in the monomeric form of Chaplin E is required for aggregation and conversion to ß-amyloid fibrils. The pH sensitivity of Chaplin E peptide structure provides a route to control peptide assembly and may be important for the physiological function of this peptide, as a surface active agent in the transition from vegetative to aerial growth and could assist Streptomyces coelicolor in response to environmental fluctuations in pH.


Assuntos
Proteínas Amiloidogênicas/química , Streptomyces coelicolor/química , Amiloide/química , Proteínas Amiloidogênicas/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Concentração de Íons de Hidrogênio , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Tensoativos
6.
Soft Matter ; 13(7): 1493-1504, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28125111

RESUMO

Retention of amphiphilic protein activity within the lipid bilayer membrane of the nanostructured biomimetic bicontinuous cubic phase is crucial for applications utilizing these hybrid protein-lipid self-assembly materials, such as in meso membrane protein crystallization and drug delivery. Previous work, mainly on soluble and membrane-associated enzymes, has shown that enzyme activity may be modified when immobilized, including membrane bound enzymes. The effect on activity may be even greater for amphiphilic enzymes with a large hydrophilic domain, such as the Neisserial enzyme lipid A phosphoethanolamine transferase (EptA). Encapsulation within the biomimetic but non-endogenous lipid bilayer membrane environment may modify the enzyme conformation, while confinement of the large hydrophilic domain with the nanoscale water channels of a continuous lipid bilayer structure may prevent full function of this enzyme. Herein we show that NmEptA remains active despite encapsulation within a nanostructured bicontinuous cubic phase. Full transfer of the phosphoethanolamine (PEA) group from a 1,2-dioleoyl-glycero-phosphoethanolamine (DOPE) doped lipid to monoolein (MO), which makes up the bicontinuous cubic phase, is shown. The reaction was found to be non-specific to the alkyl chain identity. The observed rate of enzyme activity is similar to other membrane bound enzymes, with complete transfer of the PEA group occurring in vitro, under the conditions studied, over a 24 hour timescale.


Assuntos
Etanolaminofosfotransferase/metabolismo , Lipídeo A/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Etanolaminofosfotransferase/química , Modelos Moleculares , Neisseria/enzimologia , Fosfatidiletanolaminas/metabolismo , Fosforilação , Conformação Proteica
7.
J Water Health ; 15(3): 385-401, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28598343

RESUMO

Minerals of biological origin have shown significant potential for the separation of contaminants from water worldwide. This study details the contribution of biologically derived minerals to water treatment operations, with a focus on filtration media from urban municipalities and remote cold regions. The results support biofilm-embedded iron and manganese to be the building blocks of biogenic mineral development on activated carbon and nutrient-amended zeolites. The presence of similar iron and manganese oxidising bacterial species across all filter media supports the analogous morphologies of biogenic minerals between sites and suggests that biological water treatment processes may be feasible across a range of climates. This is the first time the stages of biogenic mineral formation have been aligned with comprehensive imaging of the biofilm community and bacterial identification; especially with respect to cold regions. Where biogenic mineral formation occurs on filter media, the potential exists for enhanced adsorption for a range of organic and inorganic contaminants and improved longevity of filter media beyond the adsorption or exchange capacities of the raw material.


Assuntos
Filtração , Minerais/análise , Poluentes Químicos da Água/análise , Purificação da Água , Adsorção , Regiões Antárticas , Biodegradação Ambiental , Vitória
8.
Crit Rev Microbiol ; 42(6): 942-68, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26828960

RESUMO

The use of phages to control and reduce numbers of unwanted bacteria can be traced back to the early 1900s, when phages were explored as a tool to treat infections before the wide scale use of antibiotics. Recently, phage therapy has received renewed interest as a method to treat multiresistant bacteria. Phages are also widely used in the food industry to prevent the growth of certain bacteria in foods, and are currently being explored as a tool for use in bioremediation and wastewater treatment. Despite the large body of biological research on phages, relatively little attention has been given to computational modeling of the population dynamics of phage and bacterial interactions. The earliest model was described by Campbell in the 1960s. Subsequent modifications to this model include partial or complete resistance, multiple phage binding sites, and spatial heterogeneity. This review provides a general introduction to modeling of the population dynamics of bacteria and phage. The review introduces the basic model and relevant concepts and evaluates more complex variations of the basic model published to date, including a model of disease epidemics caused by infectious bacteria. Finally, the shortcomings and potential ways to improve the models are discussed.


Assuntos
Bactérias/virologia , Infecções Bacterianas/terapia , Bacteriófagos/fisiologia , Terapia Biológica , Animais , Bactérias/genética , Infecções Bacterianas/microbiologia , Fenômenos Fisiológicos Bacterianos , Bacteriófagos/genética , Humanos , Modelos Biológicos
9.
Langmuir ; 32(47): 12442-12452, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27326898

RESUMO

A fundamental understanding of the effect of amphiphilic protein encapsulation on the nanostructure of the bicontinuous cubic phase is crucial to progressing biomedical and biological applications of these hybrid protein-lipid materials, including as drug delivery vehicles, as biosensors, biofuel cells and for in meso crystallization. The relationship between the lipid nanomaterial and the encapsulated protein, however, remains poorly understood. In this study, we investigated the effect of incorporating the five transmembrane and lipo-proteins which make up the ß-barrel assembly machinery from Gram-negative bacteria within a series of bicontinuous cubic phases. The transmembrane ß-barrel BamA caused an increase in lattice parameter of the cubic phase upon encapsulation. By contrast, the mainly hydrophilic lipo-proteins BamB-E caused the cubic phase lattice parameters to decrease, despite their large size relative to the diameter of the cubic phase water channels. Analysis of the primary amino acid sequence was used to rationalize this effect, based on specific interactions between aromatic amino acids within the proteins and the polar-apolar interface. Other factors that were found to have an effect were lateral bilayer pressure and rigidity within the lipid bilayer, water channel diameter, and size and structure of the lipo-proteins. The data presented suggest that hydrophilic bioactive molecules can be selectively encapsulated within the cubic phase by using a lipid anchor or aromatic amino acids, for drug delivery or biosensing applications.


Assuntos
Bicamadas Lipídicas/química , Nanoestruturas/química , Proteínas/química , Proteínas da Membrana Bacteriana Externa/química , Materiais Biomiméticos/química , Colesterol/química , Proteínas de Escherichia coli/química , Lipoproteínas/química , Modelos Moleculares , Nanocápsulas/química , Nanotecnologia , Conformação Proteica em Folha beta , Proteínas Recombinantes/química
10.
Langmuir ; 32(27): 6882-94, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27315326

RESUMO

Nanostructured bicontinuous lipidic cubic phases are used for the encapsulation of proteins in a range of applications such as in meso crystallization of transmembrane proteins and as drug delivery vehicles. The retention of the nanoscale order of the cubic phases subsequent to protein incorporation, as well as retention of the protein structure and function, is essential for all of these applications. Herein synthetic peptides (WALP21, WALPS53, and WALPS73) with a common α-helical hydrophobic domain, but varying hydrophilic loop size, were designed to systematically examine the effect of peptide structure and charge on bicontinuous cubic phases. The effect of the cubic phases on the secondary structure of the peptides was also investigated. The incorporation of the WALP peptides in cubic phases formed by a range of lipids showed that hydrophobic mismatch of the peptides with the lipid bilayers, the hydrophilic domain size, and peptide charge were all significant factors determining the response of the lipid nanomaterial to protein insertion. As charge repulsion had the most significant effect on the phase transitions observed, we suggest that buffer pH and salt concentration must be carefully considered to ensure cubic mesophase retention. Importantly, the WALP peptides were found to have a different conformation depending on the local lipid environment. Such structural changes could potentially affect membrane protein function, which is crucial for both current and prospective applications.


Assuntos
Bicamadas Lipídicas/química , Modelos Moleculares , Nanoestruturas/química , Peptídeos/química , Estrutura Secundária de Proteína
11.
J Environ Manage ; 169: 145-54, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26735866

RESUMO

The application of controlled release nutrient (CRN) materials to permeable reactive barriers to promote biodegradation of petroleum hydrocarbons in groundwater was investigated. The longevity of release, influence of flow velocity and petroleum hydrocarbon concentration on nutrient release was assessed using soluble and ion exchange CRN materials; namely Polyon™ and Zeopro™. Both CRN materials, assessed at 4 °C and 23 °C, demonstrated continuing release of nitrogen, phosphorus and potassium (N-P-K) at 3500 bed volumes passing, with longer timeframes of N-P-K release at 4 °C. Zeopro™-activated carbon mixtures demonstrated depletion of N-P-K prior to 3500 bed volumes passing. Increased flow velocity was shown to lower nutrient concentrations in Polyon™ flow cells while nutrient release from Zeopro™ was largely unchanged. The presence of petroleum hydrocarbons, at 1.08 mmol/L and 3.25 mmol/L toluene, were not shown to alter nutrient release from Polyon™ and Zeopro™ across 14 days. These findings suggest that Polyon™ and Zeopro™ may be suitable CRN materials for application to PRBs in low nutrient environments.


Assuntos
Água Subterrânea/química , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Biodegradação Ambiental , Água Subterrânea/microbiologia , Nitrogênio/análise , Nitrogênio/química , Nitrogênio/metabolismo , Fósforo/análise , Fósforo/química , Fósforo/metabolismo , Potássio/análise , Potássio/química , Potássio/metabolismo , Movimentos da Água , Poluição da Água/prevenção & controle
12.
Langmuir ; 31(44): 12025-34, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26488819

RESUMO

Lipidic bicontinuous cubic mesophases with encapsulated amphiphilic proteins are widely used in a range of biological and biomedical applications, including in meso crystallization, as drug delivery vehicles for therapeutic proteins, and as biosensors and biofuel cells. However, the effect of amphiphilic protein encapsulation on the cubic phase nanostructure is not well-understood. In this study, we illustrate the effect of incorporating the bacterial amphiphilic membrane protein Ag43, and its individual hydrophobic ß(43) and hydrophilic α(43) domains, in bicontinuous cubic mesophases. For the monoolein, monoalmitolein, and phytantriol cubic phases with and without 8% w/w cholesterol, the effect of the full length amphiphilic protein Ag43 on the cubic phase nanostructure was more significant than the sum of the individual hydrophobic ß(43) and hydrophilic α(43) domains. Several factors were found to potentially influence the impact of the hydrophobic ß(43) domain on the cubic phase internal nanostructure. These include the size of the hydrophobic ß(43) domain relative to the thickness of the lipid bilayer, as well as its charge and diameter. The size of the hydrophilic α(43) domain relative to the water channel radius of the cubic mesophase was also found to be important. The secondary structure of the Ag43 proteins was affected by the hydrophobic thickness and physicochemical properties of the lipid bilayer and the water channel diameter of the cubic phase. Such structural changes may be small but could potentially affect membrane protein function.


Assuntos
Lipídeos/química , Proteínas de Membrana/química , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas
13.
Biomacromolecules ; 16(5): 1556-65, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25871317

RESUMO

Networks of nanoscale fibrous coatings made from self-assembled peptides are promising candidates for biomaterials that can promote the growth of mammalian cells. One particularly attractive feature is the possibility of adding biofunctional sequences to peptides to promote cell attachment. We deconvolute the topographic and chemical effects of nanoscale fibrils on cells by depositing a plasma polymer film on TTR1-based fibrils decorated with a range of cell adhesive chemistries (RGD and cycloRGDfK), producing a surface that retains the nanoscale fibrous topography of surface-bound fibrils but lacks the fibril surface chemistry. The surface topography was found to influence cell toxicity and spreading, and the fibril surface chemistry influenced cell attachment and spreading. This study highlights the importance of considering both the chemical and physical features of novel biomaterials and illustrates the use of plasma polymer deposition as a tool for examining the relationship between amyloid fibril structure and function.


Assuntos
Amiloide/química , Materiais Biocompatíveis/química , Biomimética , Peptídeos/química , Amiloide/ultraestrutura , Animais , Adesão Celular/efeitos dos fármacos , Matriz Extracelular/química , Matriz Extracelular/ultraestrutura , Humanos , Microscopia Eletrônica de Transmissão , Relação Estrutura-Atividade
14.
Int J Food Sci Nutr ; 66(7): 790-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26471074

RESUMO

In the present study, the colonic metabolism of three curcuminoids (80.1% curcumin, 15.6%, demethoxycurcumin (DMC) and 2.6% bis-demethoxycurcumin (Bis-DMC)) was evaluated using an in vitro model containing human faecal starters. The breakdown products formed were identified and characterized using different analytical platforms. Following in vitro incubation, the relative amounts of degraded curcuminoids and the produced metabolites were analyzed using a UHPLC coupled with a linear ion trap mass spectrometer, with the addition of hybrid ion trap-Orbitrap Mass Spectrometer when required. Up to ∼24% of curcumin, ∼61% of demethoxycurcumin (DMC) and ∼87% of bis-demethoxycurcumin (Bis-DMC) were degraded by the human faecal microbiota after 24 h of fermentation in vitro. Three main metabolites, namely tetrahydrocurcumin (THC), dihydroferulic acid (DFA) and a metabolite with an accurate mass of 181.08734, which was tentatively identified as 1-(4-Hydroxy-3-methoxyphenyl)-2-propanol were detected in the fermentation cultures containing the curcuminoids. The data presented here provide insights into curcuminoid colonic metabolism, showing that bacterial breakdown products should be considered in further studies on both bioavailability bioactivity of curcumin.


Assuntos
Colo/metabolismo , Curcumina/metabolismo , Fezes/microbiologia , Fermentação , Curcumina/análogos & derivados , Voluntários Saudáveis , Humanos , Modelos Biológicos
15.
Biochim Biophys Acta ; 1834(8): 1615-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23665069

RESUMO

The amyloid fibril-forming ability of two closely related antifungal and antimicrobial peptides derived from plant defensin proteins has been investigated. As assessed by sequence analysis, thioflavin T binding, transmission electron microscopy, atomic force microscopy and X-ray fiber diffraction, a 19 amino acid fragment from the C-terminal region of Raphanus sativus antifungal protein, known as RsAFP-19, is highly amyloidogenic. Further, its fibrillar morphology can be altered by externally controlled conditions. Freezing and thawing led to amyloid fibril formation which was accompanied by loss of RsAFP-19 antifungal activity. A second, closely related antifungal peptide displayed no fibril-forming capacity. It is concluded that while fibril formation is not associated with the antifungal properties of these peptides, the peptide RsAFP-19 is of potential use as a controllable, highly amyloidogenic small peptide for investigating the structure of amyloid fibrils and their mechanism of formation.


Assuntos
Amiloide/química , Antifúngicos/farmacologia , Fusarium/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Raphanus/química , Sementes/química , Amiloide/metabolismo , Amiloide/ultraestrutura , Benzotiazóis , Dicroísmo Circular , Defensinas/metabolismo , Fusarium/crescimento & desenvolvimento , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Estrutura Secundária de Proteína , Raphanus/metabolismo , Sementes/metabolismo , Tiazóis/metabolismo , Nicotiana/química , Difração de Raios X
16.
Eng Life Sci ; 24(7): e2400023, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38975020

RESUMO

Bioreactor scale-up and scale-down have always been a topical issue for the biopharmaceutical industry and despite considerable effort, the identification of a fail-safe strategy for bioprocess development across scales remains a challenge. With the ubiquitous growth of digital transformation technologies, new scaling methods based on computer models may enable more effective scaling. This study aimed to evaluate the potential application of machine learning (ML) algorithms for bioreactor scale-up, with a specific focus on the prediction of scaling parameters. Factors critical to the development of such models were identified and data for bioreactor scale-up studies involving CHO cell-generated mAb products collated from the literature and public sources for the development of unsupervised and supervised ML models. Comparison of bioreactor performance across scales identified similarities between the different processes and primary differences between small- and large-scale bioreactors. A series of three case studies were developed to assess the relationship between cell growth and scale-sensitive bioreactor features. An embedding layer improved the capability of artificial neural network models to predict cell growth at a large-scale, as this approach captured similarities between the processes. Further models constructed to predict scaling parameters demonstrated how ML models may be applied to assist the scaling process. The development of data sets that include more characterization data with greater variability under different gassing and agitation regimes will also assist the future development of ML tools for bioreactor scaling.

17.
Food Chem ; 457: 140010, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38908254

RESUMO

The production of cream cheese from ultrafiltered (UF) milk can reduce acid whey generation but the effect of altered protein and calcium concentration on the physicochemical properties of cream cheese is not well understood. In this study, the effect of skim milk concentration by UF (2.5 and 5 fold) was assessed both with and without calcium reduction using 2% (w/v) cation resin treatment. UF concentration increased the concentration of peptides and free amino acids and led to a more heterogeneous and porous microstructure, resulting in a softer, less viscous and less thermally stable cream cheese. Calcium reduction decreased peptide generation, increased the size of corpuscular structures, decreased porosity and increased thermal stability but did not significantly decrease cheese hardness or viscosity. The study illustrates how protein or calcium concentration, can be used to alter functional properties.

18.
J Chromatogr A ; 1716: 464588, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38217959

RESUMO

Mechanistic modelling is a simulation tool which has been effectively applied in downstream bioprocessing to model resin chromatography. Membrane and fiber chromatography are newer approaches that offer higher rates of mass transfer and consequently higher flow rates and reduced processing times. This review describes the key considerations in the development of mechanistic models for these unit operations. Mass transfer is less complex than in resin columns, but internal housing volumes can make modelling difficult, particularly for laboratory-scale devices. Flow paths are often non-linear and the dead volume is often a larger fraction of the overall volume, which may require more complex hydrodynamic models to capture residence time distributions accurately. In this respect, the combination of computational fluid dynamics with appropriate protein binding models is emerging as an ideal approach.


Assuntos
Cromatografia , Membranas Artificiais , Cromatografia/métodos , Simulação por Computador , Hidrodinâmica
19.
Food Chem ; 437(Pt 2): 137906, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37939420

RESUMO

This study investigated the effects of aerobic and anaerobic growth and proteolytic enzymes on the amino acid content of yeast hydrolysates in relation to taste and nutrition. Saccharomyces cerevisiae ATCC5574 was grown under fed-batch aerobic or batch anaerobic conditions. Intracellular glutamic acid (Glu) concentrations were 18-fold higher in aerobic yeast. Hydrolysis with papain and alkaline protease released more amino acids (AA) than simple autolysis or hydrolysis with bromelain, most significantly when applied to aerobic yeast (∼2-fold increase). Autolysates and bromelain hydrolysates from aerobic yeast had low levels of bitter and essential AAs, with high levels of umami Glu. Papain and alkaline protease hydrolysates of aerobic yeast had high levels of umami, bitter and essential AAs. Autolysates/hydrolysates from anaerobic yeast had moderate, high, and low levels of bitter, essential and umami AAs. Selection of both yeast growth conditions and hydrolysis enzyme can manipulate the free AA profile and yield of hydrolysates.


Assuntos
Bromelaínas , Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismo , Bromelaínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoácidos , Paladar , Papaína/metabolismo , Hidrólise , Ácido Glutâmico , Hidrolisados de Proteína/química
20.
Chem Commun (Camb) ; 59(41): 6251-6254, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37132502

RESUMO

A whole cell Escherichia coli biotransformation platform converting thebaine to oripavine and codeine to morphine was demonstrated with industrially applicable yields (∼1.2 × 10-2 g L-1 h-1 or ∼1.2 × 10-1 g L-1 h-1), improving >13 400-fold upon morphine production in yeast. Mutations enhanced enzyme performance and the use of a purified substrate with rich raw poppy extract expanded applicability.


Assuntos
Codeína , Morfina , Tebaína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA