Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 36(8): 1374-1385, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37531411

RESUMO

Acrylamides are widely used industrial chemicals that cause adverse effects in humans or animals, such as carcinogenicity or neurotoxicity. The excess toxicity of these reactive electrophilic chemicals is especially interesting, as it is mostly triggered by covalent reactions with biological nucleophiles, such as DNA bases, proteins, or peptides. The cytotoxicity and activation of oxidative stress response of 10 (meth)acrylamides measured in three reporter gene cell lines occurred at similar concentrations. Most acrylamides exhibited high excess toxicity, while methacrylamides acted as baseline toxicants. The (meth)acrylamides showed no reactivity toward the hard biological nucleophile 2-deoxyguanosine (2DG) within 24 h, and only acrylamides reacted with the soft nucleophile glutathione (GSH). Second-order degradation rate constants (kGSH) were measured for all acrylamides with N,N'-methylenebis(acrylamide) (NMBA) showing the highest kGSH (134.800 M-1 h-1) and N,N-diethylacrylamide (NDA) the lowest kGSH (2.574 M-1 h-1). Liquid chromatography coupled to high-resolution mass spectrometry was used to confirm the GSH conjugates of the acrylamides with a double conjugate formed for NMBA. The differences in reactivity between acrylamides and methacrylamides could be explained by the charge density of the carbon atoms because the electron-donating inductive effect of the methyl group of the methacrylamides lowered their electrophilicity and thus their reactivity. The differences in reactivity within the group of acrylamides could be explained by the energy of the lowest unoccupied molecular orbital and steric hindrance. Cytotoxicity and activation of oxidative stress response were linearly correlated with the second-order reaction rate constants of the acrylamides with GSH. The reaction of the acrylamides with GSH is hence not only a detoxification mechanism but also leads to disturbances of the redox balance, making the cells more vulnerable to reactive oxygen species. The reactivity of acrylamides explained the oxidative stress response and cytotoxicity in the cells, and the lack of reactivity of the methacrylamides led to baseline toxicity.


Assuntos
Acrilamida , Acrilamidas , Animais , Humanos , Acrilamidas/toxicidade , Acrilamida/toxicidade , Glutationa/metabolismo , Estresse Oxidativo , Oxirredução
2.
Environ Sci Technol ; 57(41): 15598-15607, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37782849

RESUMO

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) is a widely used antioxidant in tire rubber known to enter the aquatic environment via road runoff. The associated transformation product (TP) 6-PPD quinone (6-PPDQ) causes extreme acute toxicity in some fish species (e.g., coho salmon). To interpret the species-specific toxicity, information about biotransformation products of 6-PPDQ would be relevant. This study investigated toxicokinetics of 6-PPD and 6-PPDQ in the zebrafish embryo (ZFE) model. Over 96 h of exposure, 6-PPD and 6-PPDQ accumulated in the ZFE with concentration factors ranging from 140 to 2500 for 6-PPD and 70 to 220 for 6-PPDQ. A total of 22 TPs of 6-PPD and 12 TPs of 6-PPDQ were tentatively identified using liquid chromatography coupled to high-resolution mass spectrometry. After 96 h of exposure to 6-PPD, the TPs of 6-PPD comprised 47% of the total peak area (TPA), with 4-hydroxydiphenylamine being the most prominent in the ZFE. Upon 6-PPDQ exposure, >95% of 6-PPDQ taken up in the ZFE was biotransformed, with 6-PPDQ + O + glucuronide dominating (>80% of the TPA). Among other TPs of 6-PPD, a reactive N-phenyl-p-benzoquinone imine was found. The knowledge of TPs of 6-PPD and 6-PPDQ from this study may support biotransformation studies in other organisms.


Assuntos
Benzoquinonas , Fenilenodiaminas , Peixe-Zebra , Animais , Biotransformação , Cromatografia Líquida , Borracha/toxicidade , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Embrião não Mamífero/metabolismo , Toxicocinética , Fenilenodiaminas/análise , Fenilenodiaminas/farmacocinética , Fenilenodiaminas/toxicidade , Benzoquinonas/análise , Benzoquinonas/farmacocinética , Benzoquinonas/toxicidade
3.
Nanoscale ; 15(17): 7608-7624, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37042085

RESUMO

In many applications such as diagnostics and therapy development, small peptide fragments consisting of only a few amino acids are often attractive alternatives to bulky proteins. This is due to factors such as the ease of scalable chemical synthesis and numerous methods for their discovery. One drawback of using peptides is that their activity can often be negatively impacted by the lack of a rigid, 3D stabilizing structure provided by the rest of the protein. In many cases, this can be alleviated by different methods of rational templating onto nanomaterials, which provides additional possibilities to use concepts of multivalence or rational nano-engineering to enhance or even create new types of function or structure. In recent years, nanostructures made from the self-assembly of DNA strands have been used as scaffolds to create functional arrangements of peptides, often leading to greatly enhanced biological activity or new material properties. This review will give an overview of nano-templating approaches based on the combination of DNA nanotechnology and peptides. This will include both bioengineering strategies to control interactions with cells or other biological systems, as well as examples where the combination of DNA and peptides has been leveraged for the rational design of new functional materials.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Nanoestruturas/química , Nanotecnologia/métodos , Peptídeos/química , DNA/química
4.
Sci Rep ; 12(1): 12828, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896714

RESUMO

Binding interactions of the spike proteins of the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) to a peptide fragment derived from the human angiotensin converting enzyme 2 (hACE2) receptor are investigated. The peptide is employed as capture moiety in enzyme linked immunosorbent assays (ELISA) and quantitative binding interaction measurements that are based on fluorescence proximity sensing (switchSENSE). In both techniques, the peptide is presented on an oligovalent DNA nanostructure, in order to assess the impact of mono- versus trivalent binding modes. As the analyte, the spike protein and several of its subunits are tested as well as inactivated SARS-CoV-2 and pseudo viruses. While binding of the peptide to the full-length spike protein can be observed, the subunits RBD and S1 do not exhibit binding in the employed concentrations. Variations of the amino acid sequence of the recombinant full-length spike proteins furthermore influence binding behavior. The peptide was coupled to DNA nanostructures that form a geometric complement to the trimeric structure of the spike protein binding sites. An increase in binding strength for trimeric peptide presentation compared to single peptide presentation could be generally observed in ELISA and was quantified in switchSENSE measurements. Binding to inactivated wild type viruses could be shown as well as qualitatively different binding behavior of the Alpha and Beta variants compared to the wild type virus strain in pseudo virus models.


Assuntos
COVID-19 , Nanoestruturas , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/metabolismo , DNA/metabolismo , Humanos , Peptídeos/metabolismo , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA