RESUMO
The layered delafossite metal PdCrO[Formula: see text] is a natural heterostructure of highly conductive Pd layers Kondo coupled to localized spins in the adjacent Mott insulating CrO[Formula: see text] layers. At high temperatures, T, it has a T-linear resistivity which is not seen in the isostructural but nonmagnetic PdCoO[Formula: see text]. The strength of the Kondo coupling is known, as-grown crystals are extremely high purity and the Fermi surface is both very simple and experimentally known. It is therefore an ideal material platform in which to investigate "Planckian metal" physics. We do this by means of controlled introduction of point disorder, measurement of the thermal conductivity and Lorenz ratio, and studying the sources of its high-temperature entropy. The T-linear resistivity is seen to be due mainly to elastic scattering and to arise from a sum of several scattering mechanisms. Remarkably, this sum leads to a scattering rate within 10[Formula: see text] of the Planckian value of k[Formula: see text]T/[Formula: see text].
RESUMO
High-quality 1T-TaS2 crystals are investigated by angle-resolved photoelectron spectroscopy, Raman spectroscopy, and low-energy electron diffraction. The Ferro-Rotational Order (FRO) of the charge density wave switches configuration at the transition between the commensurate and the nearly commensurate phase. This process requires samples without built-in or externally induced strain. Moreover, temperature gradients generated by a focused laser beam can be employed in order to freeze the in-plane chirality. Based on such observations, we propose a protocol to obtain durable and nonvolatile state switching of the FRO configuration in bulk 1T-TaS2 crystals.
RESUMO
The pressure evolution of the Raman active electronic excitations of the transition metal dichalcogenides 2H-TaS_{2} is followed through the pressure phase diagram embedding incommensurate charge-density-wave and superconducting states. At high pressure, the charge-density wave is found to collapse at 8.5 GPa. In the coexisting charge-density-wave and superconducting orders, we unravel a strong in-gap superconducting mode, attributed to a Higgs mode, coexisting with the expected incoherent Cooper-pair breaking signature. The latter remains in the pure superconducting state reached above 8.5 GPa. Our report constitutes a new observation of such Raman active Higgs mode since the long-standing unique case 2H-NbSe_{2}.
RESUMO
We report the evolution of the electronic nematic susceptibility in FeSe via Raman scattering as a function of hydrostatic pressure up to 5.8 GPa where the superconducting transition temperature T_{c} reaches its maximum. The critical nematic fluctuations observed at low pressure vanish above 1.6 GPa, indicating they play a marginal role in the fourfold enhancement of T_{c} at higher pressures. The collapse of nematic fluctuations appears to be linked to a suppression of low energy electronic excitations which manifests itself by optical phonon anomalies at around 2 GPa, in agreement with lattice dynamical and electronic structure calculations using local density approximation combined with dynamical mean field theory. Our results reveal two different regimes of nematicity in the phase diagram of FeSe under pressure: a d-wave Pomeranchuk instability of the Fermi surface at low pressure and a magnetic driven orthorhombic distortion at higher pressure.
RESUMO
The ability to confine THz photons inside deep-subwavelength cavities promises a transformative impact for THz light engineering with metamaterials and for realizing ultrastrong light-matter coupling at the single emitter level. To that end, the most successful approach taken so far has relied on cavity architectures based on metals, for their ability to constrain the spread of electromagnetic fields and tailor geometrically their resonant behavior. Here, we experimentally demonstrate a comparatively high level of confinement by exploiting a plasmonic mechanism based on localized THz surface plasmon modes in bulk semiconductors. We achieve plasmonic confinement at around 1 THz into record breaking small footprint THz cavities exhibiting mode volumes as low as [Formula: see text], excellent coupling efficiencies and a large frequency tunability with temperature. Notably, we find that plasmonic-based THz cavities can operate until the emergence of electromagnetic nonlocality and Landau damping, which together constitute a fundamental limit to plasmonic confinement. This work discloses nonlocal plasmonic phenomena at unprecedentedly low frequencies and large spatial scales and opens the door to novel types of ultrastrong light-matter interaction experiments thanks to the plasmonic tunability.