Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nature ; 629(8013): 851-860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38560995

RESUMO

Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.


Assuntos
Aves , Evolução Molecular , Genoma , Filogenia , Animais , Aves/genética , Aves/classificação , Aves/anatomia & histologia , Encéfalo/anatomia & histologia , Extinção Biológica , Genoma/genética , Genômica , Densidade Demográfica , Masculino , Feminino
2.
Proc Natl Acad Sci U S A ; 120(7): e2201945119, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745783

RESUMO

Despite evidence of declining biosphere integrity, we currently lack understanding of how the functional diversity associated with changes in abundance among ecological communities has varied over time and before widespread human disturbances. We combine morphological, ecological, and life-history trait data for >260 extant bird species with genomic-based estimates of changing effective population size (Ne) to quantify demographic-based shifts in avian functional diversity over the past million years and under pre-anthropogenic climate warming. We show that functional diversity was relatively stable over this period, but underwent significant changes in some key areas of trait space due to changing species abundances. Our results suggest that patterns of population decline over the Pleistocene have been concentrated in particular regions of trait space associated with extreme reproductive strategies and low dispersal ability, consistent with an overall erosion of functional diversity. Further, species most sensitive to climate warming occupied a relatively narrow region of functional space, indicating that the largest potential population increases and decreases under climate change will occur among species with relatively similar trait sets. Overall, our results identify fluctuations in functional space of extant species over evolutionary timescales and represent the demographic-based vulnerability of different regions of functional space among these taxa. The integration of paleodemographic dynamics with functional trait data enhances our ability to quantify losses of biosphere integrity before anthropogenic disturbances and attribute contemporary biodiversity loss to different drivers over time.


Assuntos
Biodiversidade , Biota , Humanos , Animais , Fatores de Tempo , Aves/genética , Mudança Climática , Ecossistema
3.
Nature ; 529(7584): 80-3, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26675730

RESUMO

Understanding how ecological communities are organized and how they change through time is critical to predicting the effects of climate change. Recent work documenting the co-occurrence structure of modern communities found that most significant species pairs co-occur less frequently than would be expected by chance. However, little is known about how co-occurrence structure changes through time. Here we evaluate changes in plant and animal community organization over geological time by quantifying the co-occurrence structure of 359,896 unique taxon pairs in 80 assemblages spanning the past 300 million years. Co-occurrences of most taxon pairs were statistically random, but a significant fraction were spatially aggregated or segregated. Aggregated pairs dominated from the Carboniferous period (307 million years ago) to the early Holocene epoch (11,700 years before present), when there was a pronounced shift to more segregated pairs, a trend that continues in modern assemblages. The shift began during the Holocene and coincided with increasing human population size and the spread of agriculture in North America. Before the shift, an average of 64% of significant pairs were aggregated; after the shift, the average dropped to 37%. The organization of modern and late Holocene plant and animal assemblages differs fundamentally from that of assemblages over the past 300 million years that predate the large-scale impacts of humans. Our results suggest that the rules governing the assembly of communities have recently been changed by human activity.


Assuntos
Agricultura/história , Ecossistema , Atividades Humanas/história , Fenômenos Fisiológicos Vegetais , Animais , História Antiga , Humanos , América do Norte , Dinâmica Populacional , Fatores de Tempo
8.
Ecol Evol ; 14(3): e11099, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487747

RESUMO

The core breeding range of Swainson's warbler (Limnothlypis swainsonii) overlaps a zone of exceptionally high tornado frequency in southeastern North America. The importance of tornadoes in creating breeding habitat for this globally rare warbler and other disturbance-dependent species has been largely overlooked. This paper estimates tornado frequency (1950-2021) and forest disturbance in the 240 counties and parishes in which breeding was documented from 1988 to 2014. The frequency of destructive tornadoes (EF1-EF5) varied 6-fold across the breeding range with a peak in the Gulf Coast states. Counties from east Texas to Alabama experienced the lowest median return interval of 5.4 years per 1000 km2, resulting in approximately 2477 ha of forest damage per 1000 km2 per century, based on current forestland cover. Tornadoes were significantly less frequent north and east of the core breeding range, with return intervals increasing to 9.1 years per 1000 km2 for breeding counties on the Atlantic coastal plain, 10.2 years per 1000 km2 in the Ozark Mountains, and 32.3 years per 1000 km2 in the Appalachian Mountains. Breeding counties within 150 km of the coastline from east Texas to North Carolina are also subjected to the highest frequency of hurricanes in the Western Hemisphere. Hurricanes often cause massive forest damage but archived meteorological and forestry data are insufficient to estimate the aggregate extent of forest disturbance in breeding counties. Nevertheless, the combined impact of tornadoes and hurricanes in the pre-Anthropogenic era was likely sufficient to produce a dynamic mosaic of early-successional forest crucial for the breeding ecology of Swainson's warbler. To ensure the long-term survival of this rare warbler, it is advisable to develop habitat management plans that incorporate remote sensing data on early-successional forest generated by catastrophic storms as well as anthropogenic activities.

9.
Ecol Evol ; 14(9): e70279, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39263464

RESUMO

The diversification of hummingbirds (Trochilidae) has shaped the pollination strategies and floral trait evolution in at least 68 families of flowering plants in the Western Hemisphere. The trumpet creeper (Bignoniaceae) is the quintessential example of ornithophily in eastern North America. The mutualistic relationship between this orange-flowered liana and the ruby-throated hummingbird (Archilochus colubris) was illustrated as early as 1731. However, neither historical nor modern accounts accurately describe the feeding behavior of ruby-throats at trumpet creeper flowers or the floral adaptations for ornithophily. This paper explores their surprisingly immersive mode of foraging at trumpet creeper flowers and quantitatively assesses floral traits in two populations in the Ozark Mountains. The ruby-throat's bill is approximately one-third the length of the trumpet-shaped flowers, which counters the tendency for the corolla length of ornithophilous plants to match the bill length of their principal hummingbird pollinator. To access the nectary, ruby-throats grasp or cling to the ventral petal lobe of the corolla with their claws and thrust their head and upper body into the flower. This immersive "floral-diving" had not been formally documented among the 356 species of hummingbirds until now. The didynamous anthers and stigma are strategically positioned inside the corolla to brush the crown feathers when the ruby-throat inserts its head. A narrow stricture in the corolla, about a third of the way up, allows the bill and tongue of hummingbirds to pass while blocking bumblebees and carpenter bees from reaching the nectary. As a result, the abundant sucrose-rich floral nectar seems to be reserved for hummingbird pollinators.

10.
Evolution ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39288223

RESUMO

Island radiations, such as those of the Australo-Pacific, offer unique insight into diversification, extinction, and early speciation processes. Yet, their speciation and colonization histories are often obscured by conflicting genomic signals from incomplete lineage sorting or hybridization. Here, we integrated mitogenomes and genome-wide SNPs to unravel the evolutionary history of one of the world's most geographically widespread island radiations. The Australo-Pacific reed warblers (Acrocephalus luscinius complex) are a speciose lineage including five species that have become extinct since the 19th century and ten additional species of conservation concern. The radiation spans over 10,000 km across Australo-Papua, Micronesia and Polynesia, including the Mariana, Hawaii and Pitcairn Island archipelagos. Earlier mtDNA studies suggested a stepping-stone colonization process, resulting in archipelago-level secondary sympatry of divergent mtDNA lineages in the Mariana Islands and Marquesas. These studies hypothesised that morphologically similar species on neighbouring islands arose from ecological convergence. Using hDNA from historical museum specimens and modern genetic samples, we show that incomplete lineage sorting and/or gene flow have shaped the radiation of Australo-Pacific reed warblers rather than secondary sympatry. The nuclear genome reconstructs a simpler biogeographic history than mtDNA, showing close relationships between species in the Mariana Islands and Marquesas despite their paraphyletic mtDNA lineages. Gene flow likely involved early and late colonizing waves of the radiation before the loss of ancestral dispersive ability. Our results highlight how collection genomics can elucidate evolutionary history and inform conservation efforts for threatened species.

11.
Proc Natl Acad Sci U S A ; 107(11): 5030-5, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20194760

RESUMO

The role of intraspecific and interspecific interactions in structuring biotic communities at fine spatial scales is well documented, but the signature of species interactions at coarser spatial scales is unclear. We present evidence that species interactions may be a significant factor in mediating the regional assembly of the Danish avifauna. Because >95% of breeding species (n = 197) are migratory, we hypothesized that dispersal limitation would not be important and that breeding distributions would largely reflect resource availability and autecological habitat preferences. Instead, we detected a striking pattern of spatial segregation between ecologically similar species at two spatial scales with a suite of null models that factored in the spatial distribution of habitats in Denmark as well as population size and biomass of each species. Habitat utilization analyses indicated that community-wide patterns of spatial segregation could not be attributed to the patchy distribution of habitat or to gross differences in habitat utilization among ecologically similar species. We hypothesize that, when habitat patch size is limited, conspecific attraction in concert with interspecific territoriality may result in spatially segregated distributions of ecologically similar species at larger spatial scales. In the Danish avifauna, the effects of species interactions on community assembly appear pervasive and can be discerned at grain sizes up to four orders of magnitude larger than those of individual territories. These results suggest that species interactions should be incorporated into species distribution modeling algorithms designed to predict species occupancy patterns based on environmental variables.


Assuntos
Aves/fisiologia , Ecossistema , Animais , Cruzamento , Dinamarca , Comportamento Alimentar , Geografia , Especificidade da Espécie
12.
Nat Ecol Evol ; 7(6): 862-872, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37106156

RESUMO

Anticipating species' responses to environmental change is a pressing mission in biodiversity conservation. Despite decades of research investigating how climate change may affect population sizes, historical context is lacking, and the traits that mediate demographic sensitivity to changing climate remain elusive. We use whole-genome sequence data to reconstruct the demographic histories of 263 bird species over the past million years and identify networks of interacting morphological and life history traits associated with changes in effective population size (Ne) in response to climate warming and cooling. Our results identify direct and indirect effects of key traits representing dispersal, reproduction and survival on long-term demographic responses to climate change, thereby highlighting traits most likely to influence population responses to ongoing climate warming.


Assuntos
Biodiversidade , Mudança Climática , Animais , Temperatura Baixa , Aves/fisiologia , Demografia
13.
Mol Phylogenet Evol ; 62(1): 397-406, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22063264

RESUMO

Next generation sequencing (NGS) technologies are revolutionizing many biological disciplines but have been slow to take root in phylogeography. This is partly due to the difficulty of using NGS to sequence orthologous DNA fragments for many individuals at low cost. We explore cases of recent divergence in four phylogenetically diverse avian systems using a method for quick and cost-effective generation of primary DNA sequence data using pyrosequencing. NGS data were processed using an analytical pipeline that reduces many reads into two called alleles per locus per individual. Using single nucleotide polymorphisms (SNPs) mined from the loci, we detected population differentiation in each of the four bird systems, including: a case of ecological speciation in rails (Rallus); a rapid postglacial radiation in the genus Junco; recent in situ speciation among hummingbirds (Trochilus) in Jamaica; and subspecies of white-crowned sparrows (Zonotrichia leucophrys) along the Pacific coast. The number of recovered loci aligning closely to chromosomal locations on the zebra finch (Taeniopygia guttata) genome was highly correlated to the size of the chromosome, suggesting that loci are randomly distributed throughout the genome. Using eight loci found in Zonotrichia and Junco lineages, we were also able to generate a species tree of these sparrow sister genera, demonstrating the potential of this method for generating data amenable to coalescent-based analysis. We discuss improvements that should enhance the method's utility for primary data generation.


Assuntos
Aves/genética , Especiação Genética , Animais , Proteínas Aviárias/genética , Sequência de Bases , Aves/classificação , América Central , Mapeamento Cromossômico , Análise por Conglomerados , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Jamaica , Tipagem de Sequências Multilocus/métodos , América do Norte , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência
14.
Mol Phylogenet Evol ; 64(2): 342-56, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22543055

RESUMO

Mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Aves). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0-10.9% with the differences occurring mainly between 51 and 225 nucleotides 3' of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome.


Assuntos
DNA Mitocondrial/genética , Papagaios/classificação , Papagaios/genética , Filogenia , Animais , Evolução Molecular , Duplicação Gênica , Genes Mitocondriais , Genoma Mitocondrial , Íntrons , Tipagem de Sequências Multilocus , RNA de Transferência/genética , Análise de Sequência de DNA
15.
Conserv Biol ; 26(1): 47-56, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21797923

RESUMO

Assessing species survival status is an essential component of conservation programs. We devised a new statistical method for estimating the probability of species persistence from the temporal sequence of collection dates of museum specimens. To complement this approach, we developed quantitative stopping rules for terminating the search for missing or allegedly extinct species. These stopping rules are based on survey data for counts of co-occurring species that are encountered in the search for a target species. We illustrate both these methods with a case study of the Ivory-billed Woodpecker (Campephilus principalis), long assumed to have become extinct in the United States in the 1950s, but reportedly rediscovered in 2004. We analyzed the temporal pattern of the collection dates of 239 geo-referenced museum specimens collected throughout the southeastern United States from 1853 to 1932 and estimated the probability of persistence in 2011 as <6.4 × 10(-5) , with a probable extinction date no later than 1980. From an analysis of avian census data (counts of individuals) at 4 sites where searches for the woodpecker were conducted since 2004, we estimated that at most 1-3 undetected species may remain in 3 sites (one each in Louisiana, Mississippi, Florida). At a fourth site on the Congaree River (South Carolina), no singletons (species represented by one observation) remained after 15,500 counts of individual birds, indicating that the number of species already recorded (56) is unlikely to increase with additional survey effort. Collectively, these results suggest there is virtually no chance the Ivory-billed Woodpecker is currently extant within its historical range in the southeastern United States. The results also suggest conservation resources devoted to its rediscovery and recovery could be better allocated to other species. The methods we describe for estimating species extinction dates and the probability of persistence are generally applicable to other species for which sufficient museum collections and field census results are available.


Assuntos
Aves , Conservação dos Recursos Naturais/métodos , Extinção Biológica , Modelos Estatísticos , Animais , Sudeste dos Estados Unidos
16.
Sci Rep ; 12(1): 11936, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831425

RESUMO

Avian nectar-robbing is common in some floras but its impact on plant-pollinator mutualisms, flowering phenology, and the evolution of floral traits remains largely unexplored. Surprisingly, there have been no quantitative studies of the topography and extent of floral damage inflicted on any flowering species by nectar-robbing birds. I studied nectar-robbing of orchard oriole (Icteridae: Icterus spurius) on the large reddish-orange flowers of trumpet creeper (Bignoniaceae: Campsis radicans), an ornithophilous liana of eastern North America. Floral traits that inhibit nectar-robbery by hummingbirds and bees, such as the thickened calyx and sympetalous corolla, are ineffective in deterring orioles. Orioles target the zygomorphic trumpet-shaped corollas at the 11:00 h or 01:00 h positions with a closed-bill puncture and then enlarge the incision with bill-gaping to reach the nectary. More than 92% of flowers were robbed when orioles were present. Fruit set was nil until orioles departed on fall migration in late July-early August. The timing suggests oriole nectary-robbery may be a potent selection agent for an extended flowering season or delay in the onset of flowering. The biological and geographic attributes of the Campsis-Icterus association make it a promising model system for studying the consequences of avian nectar-robbery on pollination biology and floral trait evolution.


Assuntos
Bignoniaceae , Icterícia , Animais , Abelhas , Aves , Flores , Néctar de Plantas , Polinização
17.
Nat Commun ; 13(1): 3940, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803946

RESUMO

Biotic homogenization-increasing similarity of species composition among ecological communities-has been linked to anthropogenic processes operating over the last century. Fossil evidence, however, suggests that humans have had impacts on ecosystems for millennia. We quantify biotic homogenization of North American mammalian assemblages during the late Pleistocene through Holocene (~30,000 ybp to recent), a timespan encompassing increased evidence of humans on the landscape (~20,000-14,000 ybp). From ~10,000 ybp to recent, assemblages became significantly more homogenous (>100% increase in Jaccard similarity), a pattern that cannot be explained by changes in fossil record sampling. Homogenization was most pronounced among mammals larger than 1 kg and occurred in two phases. The first followed the megafaunal extinction at ~10,000 ybp. The second, more rapid phase began during human population growth and early agricultural intensification (~2,000-1,000 ybp). We show that North American ecosystems were homogenizing for millennia, extending human impacts back ~10,000 years.


Assuntos
Biodiversidade , Extinção Biológica , Fósseis , Mamíferos , Agricultura , Animais , Tamanho Corporal , Ecossistema , Humanos , América do Norte , Crescimento Demográfico
18.
Trends Ecol Evol ; 36(1): 61-75, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33067015

RESUMO

Recent renewed interest in using fossil data to understand how biotic interactions have shaped the evolution of life is challenging the widely held assumption that long-term climate changes are the primary drivers of biodiversity change. New approaches go beyond traditional richness and co-occurrence studies to explicitly model biotic interactions using data on fossil and modern biodiversity. Important developments in three primary areas of research include analysis of (i) macroevolutionary rates, (ii) the impacts of and recovery from extinction events, and (iii) how humans (Homo sapiens) affected interactions among non-human species. We present multiple lines of evidence for an important and measurable role of biotic interactions in shaping the evolution of communities and lineages on long timescales.


Assuntos
Biodiversidade , Fósseis , Evolução Biológica , Mudança Climática
19.
Biol Lett ; 6(1): 112-5, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-19776061

RESUMO

We used mtDNA sequence data to confirm that the controversial 100-year-old holotype of the Bogotá sunangel (Heliangelus zusii) represents a valid species. We demonstrate that H. zusii is genetically well differentiated from taxa previously hypothesized to have given rise to the specimen via hybridization. Phylogenetic analyses place H. zusii as sister to a clade of mid- to high-elevation Andean species currently placed in the genera Taphrolesbia and Aglaiocercus. Heliangelus zusii, presumed extinct, has never been observed in nature by biologists. We infer that the species occupied a restricted distribution between the upper tropical and temperate zones of the northern Andes and that it was most probably driven to extinction by deforestation that accompanied human population growth during the nineteenth and early twentieth centuries. We demonstrate the feasibility of obtaining DNA from nearly microscopic tissue samples from old hummingbird specimens and suggest that these methods could be used to resolve the taxonomy of dozens of avian taxa known only from type specimens.


Assuntos
Aves/classificação , Aves/genética , DNA Mitocondrial/genética , Evolução Molecular , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , Demografia , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA , América do Sul , Especificidade da Espécie
20.
Nat Commun ; 11(1): 491, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980659

RESUMO

The causes of continental patterns in species richness continue to spur heated discussion. Hypotheses based on ambient energy have dominated the debate, but are increasingly being challenged by hypotheses that model richness as the overlap of species ranges, ultimately controlled by continental range dynamics of individual species. At the heart of this controversy lies the question of whether species richness of individual grid cells is controlled by local factors, or reflects larger-scale spatial patterns in the turnover of species' ranges. Here, we develop a new approach based on assemblage dispersion fields, formed by overlaying the geographic ranges of all species co-occurring in a grid cell. We created dispersion fields for all tetrapods of South America, and characterized the orientation and shape of dispersion fields as a vector field. The resulting maps demonstrate the existence of macro-structures in the turnover of biotic similarity at continental scale that are congruent among vertebrate classes. These structures underline the importance of continental-scale processes for species richness in individual assemblages.


Assuntos
Biodiversidade , Vertebrados/fisiologia , Animais , Ecossistema , Geografia , Modelos Teóricos , América do Sul , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA