Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Am Chem Soc ; 146(11): 7763-7770, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456418

RESUMO

Blends comprising organic semiconductors and inorganic quantum dots (QDs) are relevant for many optoelectronic applications and devices. However, the individual components in organic-QD blends have a strong tendency to aggregate and phase-separate during film processing, compromising both their structural and electronic properties. Here, we demonstrate a QD surface engineering approach using electronically active, highly soluble semiconductor ligands that are matched to the organic semiconductor host material to achieve well-dispersed inorganic-organic blend films, as characterized by X-ray and neutron scattering, and electron microscopies. This approach preserves the electronic properties of the organic and QD phases and also creates an optimized interface between them. We exemplify this in two emerging applications, singlet-fission-based photon multiplication (SF-PM) and triplet-triplet annihilation-based photon upconversion (TTA-UC). Steady-state and time-resolved optical spectroscopy shows that triplet excitons can be transferred with near unity efficiently across the organic-inorganic interface, while the organic films maintain efficient SF (190% yield) in the organic phase. By changing the relative energy between organic and inorganic components, yellow upconverted emission is observed upon 790 nm NIR excitation. Overall, we provide a highly versatile approach to overcome longstanding challenges in the blending of organic semiconductors with QDs that have relevance for many optical and optoelectronic applications.

2.
J Am Chem Soc ; 144(1): 368-376, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34936763

RESUMO

Natural photosystems use protein scaffolds to control intermolecular interactions that enable exciton flow, charge generation, and long-range charge separation. In contrast, there is limited structural control in current organic electronic devices such as OLEDs and solar cells. We report here the DNA-encoded assembly of π-conjugated perylene diimides (PDIs) with deterministic control over the number of electronically coupled molecules. The PDIs are integrated within DNA chains using phosphoramidite coupling chemistry, allowing selection of the DNA sequence to either side, and specification of intermolecular DNA hybridization. In this way, we have developed a "toolbox" for construction of any stacking sequence of these semiconducting molecules. We have discovered that we need to use a full hierarchy of interactions: DNA guides the semiconductors into specified close proximity, hydrophobic-hydrophilic differentiation drives aggregation of the semiconductor moieties, and local geometry and electrostatic interactions define intermolecular positioning. As a result, the PDIs pack to give substantial intermolecular π wave function overlap, leading to an evolution of singlet excited states from localized excitons in the PDI monomer to excimers with wave functions delocalized over all five PDIs in the pentamer. This is accompanied by a change in the dominant triplet forming mechanism from localized spin-orbit charge transfer mediated intersystem crossing for the monomer toward a delocalized excimer process for the pentamer. Our modular DNA-based assembly reveals real opportunities for the rapid development of bespoke semiconductor architectures with molecule-by-molecule precision.


Assuntos
Perileno
3.
J Am Chem Soc ; 143(15): 5745-5754, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33835789

RESUMO

Novel approaches to modify the spectral output of the sun have seen a surge in interest recently, with triplet-triplet annihilation driven photon upconversion (TTA-UC) gaining widespread recognition due to its ability to function under low-intensity, noncoherent light. Herein, four diphenylanthracene (DPA) dimers are investigated to explore how the structure of these dimers affects upconversion efficiency. Also, the mechanism responsible for intramolecular upconversion is elucidated. In particular, two models are compared using steady-state and time-resolved simulations of the TTA-UC emission intensities and kinetics. All dimers perform TTA-UC efficiently in the presence of the sensitizer platinum octaethylporphyrin. The meta-coupled dimer 1,3-DPA2 performs best yielding a 21.2% upconversion quantum yield (out of a 50% maximum), which is close to that of the reference monomer DPA (24.0%). Its superior performance compared to the other dimers is primarily ascribed to the longer triplet lifetime of this dimer (4.7 ms), thus reinforcing the importance of this parameter. Comparisons between simulations and experiments reveal that the double-sensitization mechanism is part of the mechanism of intramolecular upconversion and that this additional pathway could be of great significance under specific conditions. The results from this study can thus act as a guide not only in terms of annihilator design but also for the design of future solid-state systems where intramolecular exciton migration is anticipated to play a major role.

4.
J Am Chem Soc ; 142(41): 17581-17588, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32969652

RESUMO

Efficient energy transfer is particularly important for multiexcitonic processes like singlet fission and photon upconversion. Observation of the transition from short-range tunneling to long-range hopping during triplet exciton transfer from CdSe nanocrystals to anthracene is reported here. This is firmly supported by steady-state photon upconversion measurements, a direct proxy for the efficiency of triplet energy transfer (TET), as well as transient absorption measurements. When phenylene bridges are initially inserted between a CdSe nanocrystal donor and anthracene acceptor, the rate of TET decreases exponentially, commensurate with a decrease in the photon upconversion quantum efficiency from 11.6% to 4.51% to 0.284%, as expected from a tunneling mechanism. However, as the rigid bridge is increased in length to 4 and 5 phenylene units, photon upconversion quantum efficiencies increase again to 0.468% and 0.413%, 1.5-1.6 fold higher than that with 3 phenylene units (using the convention where the maximum upconversion quantum efficiency is 100%). This suggests a transition from exciton tunneling to hopping, resulting in relatively efficient and distance-independent TET beyond the traditional 1 nm Dexter distance. Transient absorption spectroscopy is used to confirm triplet energy transfer from CdSe to transmitter, and the formation of a bridge triplet state as an intermediate for the hopping mechanism. This first observation of the tunneling-to-hopping transition for long-range triplet energy transfer between nanocrystal light absorbers and molecular acceptors suggests that these hybrid materials should further be explored in the context of artificial photosynthesis.

5.
Phys Chem Chem Phys ; 22(3): 1715-1720, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31895392

RESUMO

Perylene is a promising annihilator candidate for triplet-triplet annihilation photon upconversion, which has been successfully used in solar cells and in photocatalysis. Perylene can, however, form excimers, reducing the energy conversion efficiency and hindering further development of TTA-UC systems. Alkyl substitution of perylene can suppress excimer formation, but decelerate triplet energy transfer and triplet-triplet annihilation at the same time. Our results show that mono-substitution with small alkyl groups selectively blocks excimer formation without severly compromising the TTA-UC efficiency. The experimental results are complemented by DFT calculations, which demonstrate that excimer formation is suppressed by steric repulsion. The results demonstrate how the chemical structure can be modified to block unwanted intermolecular excited state relaxation pathways with minimal effect on the preferred ones.

6.
J Chem Phys ; 153(21): 214705, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291902

RESUMO

Triplet-triplet annihilation photon upconversion (TTA-UC) in solid state assemblies are desirable since they can be easily incorporated into devices such as solar cells, thus utilizing more of the solar spectrum. Realizing this is, however, a significant challenge that must circumvent the need for molecular diffusion, poor exciton migration, and detrimental back energy transfer among other hurdles. Here, we show that the above-mentioned issues can be overcome using the versatile and easily synthesized oxotriphenylhexanoate (OTHO) gelator that allows covalent incorporation of chromophores (or other functional units) at well-defined positions. To study the self-assembly properties as well as its use as a TTA-UC platform, we combine the benchmark couple platinum octaethylporphyrin as a sensitizer and 9,10-diphenylanthracene (DPA) as an annihilator, where DPA is covalently linked to the OTHO gelator at different positions. We show that TTA-UC can be achieved in the chromophore-decorated gels and that the position of attachment affects the photophysical properties as well as triplet energy transfer and triplet-triplet annihilation. This study not only provides proof-of-principle for the covalent approach but also highlights the need for a detailed mechanistic insight into the photophysical processes underpinning solid state TTA-UC.

7.
J Am Chem Soc ; 141(24): 9578-9584, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31131601

RESUMO

The triplet pair is the key functional unit in triplet-triplet annihilation photon upconversion. The same molecular properties that stabilize the triplet pair also allow dimers to form on the singlet energy surface, creating an unwanted energy relaxation pathway. Here we show that excimer formation most likely is a consequence of a triplet dimer formed before the annihilation event. Polarity-dependent studies were performed to elucidate how to promote wanted emission pathways over excimer formation. Furthermore, we show that the yield of triplet-triplet annihilation is increased in higher-viscosity solvents. The results will bring new insights in how to increase the upconversion efficiency and how to avoid energy-loss channels.

8.
J Am Chem Soc ; 141(32): 12907-12915, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31336046

RESUMO

Singlet fission is an exciton multiplication process in organic molecules in which a photogenerated spin-singlet exciton is rapidly and efficiently converted to two spin-triplet excitons. This process offers a mechanism to break the Shockley-Queisser limit by overcoming the thermalization losses inherent to all single-junction photovoltaics. One of the most promising methods to harness the singlet fission process is via the efficient extraction of the dark triplet excitons into quantum dots (QDs) where they can recombine radiatively, thereby converting high-energy photons to pairs of low-energy photons, which can then be captured in traditional inorganic PVs such as Si. Such a singlet fission photon multiplication (SF-PM) process could increase the efficiency of the best Si cells from 26.7% to 32.5%, breaking the Shockley-Queisser limit. However, there has been no demonstration of such a singlet fission photon multiplication (SF-PM) process in a bulk system to date. Here, we demonstrate a solution-based bulk SF-PM system based on the singlet fission material TIPS-Tc combined with PbS QDs. Using a range of steady-state and time-resolved measurements combined with analytical modeling we study the dynamics and mechanism of the triplet harvesting process. We show that the system absorbs >95% of incident photons within the singlet fission material to form singlet excitons, which then undergo efficient singlet fission in the solution phase (135 ± 5%) before quantitative harvesting of the triplet excitons (95 ± 5%) via a low concentration of QD acceptors, followed by the emission of IR photons. We find that in order to achieve efficient triplet harvesting it is critical to engineer the surface of the QD with a triplet transfer ligand and that bimolecular decay of triplets is potentially a major loss pathway which can be controlled via tuning the concentration of QD acceptors. We demonstrate that the photon multiplication efficiency is maintained up to solar fluence. Our results establish the solution-based SF-PM system as a simple and highly tunable platform to understand the dynamics of a triplet energy transfer process between organic semiconductors and QDs, one that can provide clear design rules for new materials.

9.
Phys Chem Chem Phys ; 20(11): 7549-7558, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29492496

RESUMO

Energy and electron transfer reactions are central to many different processes and research fields, from photosynthesis and solar energy harvesting to biological and medical applications. Herein we report a comprehensive study of the singlet and triplet energy transfer dynamics in porphyrin-anthracene coordination complexes. Seven newly synthesized pyridine functionalized anthracene ligands, five with various bridge lengths and two dendrimer structures containing three and seven anthracene units, were prepared. We found that triplet energy transfer from ruthenium octaethylporphyrin to an axially coordinated anthracene is possible, and is in some cases followed by back triplet energy transfer to the porphyrin. The triplet energy transfer follows an exponential distance dependence with an attenuation factor, ß, of 0.64 Å-1. Further, singlet energy transfer from anthracene to the ruthenium porphyrin appears to follow a R6 Förster distance dependence. Porphyrin-anthracene complexes are also used as triplet sensitizers for triplet-triplet annihilation (TTA) based photon upconversion, demonstrating their potential for photophysical and photochemical applications. The triplet lifetime of the complex is extended by the anthracene ligands, resulting in a threefold increase in the upconversion efficiency, ΦUC to 4.5%, compared to the corresponding ruthenium porphyrin-pyridine complex. Based on the results herein we discuss the future design of supra-molecular structures for TTA upconversion.

10.
Phys Chem Chem Phys ; 19(17): 10931-10939, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28402383

RESUMO

Triplet-triplet annihilation photon upconversion (TTA-UC) can, through a number of energy transfer processes, efficiently combine two low frequency photons into one photon of higher frequency. TTA-UC systems consist of one absorbing species (the sensitizer) and one emitting species (the annihilator). Herein, we show that the structurally similar annihilators, 9,10-diphenylanthracene (DPA, 1), 9-(4-phenylethynyl)-10-phenylanthracene (2) and 9,10-bis(phenylethynyl)anthracene (BPEA, 3) have very different upconversion efficiencies, 15.2 ± 2.8%, 15.9 ± 1.3% and 1.6 ± 0.8%, respectively (of a maximum of 50%). We show that these results can be understood in terms of a loss channel, previously unaccounted for, originating from the difference between the BPEA singlet and triplet surface shapes. The difference between the two surfaces results in a fraction of the triplet state population having geometries not energetically capable of forming the first singlet excited state. This is supported by TD-DFT calculations of the annihilator excited state surfaces as a function of phenyl group rotation. We thereby highlight that the commonly used "spin-statistical factor" should be used with caution when explaining TTA-efficiencies. Furthermore, we show that the precious metal free zinc octaethylporphyrin (ZnOEP) can be used for efficient sensitization and that the upconversion quantum yield is maximized when sensitizer-annihilator spectral overlap is minimized (ZnOEP with 2).

11.
Proc Biol Sci ; 283(1843)2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27881755

RESUMO

Trying to unravel Darwin's entangled bank further, we describe the architecture of a network involving multiple forms of mutualism (pollination by animals, seed dispersal by birds and plant protection by ants) and evaluate whether this multi-network shows evidence of a structure that promotes robustness. We found that species differed strongly in their contributions to the organization of the multi-interaction network, and that only a few species contributed to the structuring of these patterns. Moreover, we observed that the multi-interaction networks did not enhance community robustness compared with each of the three independent mutualistic networks when analysed across a range of simulated scenarios of species extinction. By simulating the removal of highly interacting species, we observed that, overall, these species enhance network nestedness and robustness, but decrease modularity. We discuss how the organization of interlinked mutualistic networks may be essential for the maintenance of ecological communities, and therefore the long-term ecological and evolutionary dynamics of interactive, species-rich communities. We suggest that conserving these keystone mutualists and their interactions is crucial to the persistence of species-rich mutualistic assemblages, mainly because they support other species and shape the network organization.


Assuntos
Evolução Biológica , Ecossistema , Extinção Biológica , Simbiose , Animais , Modelos Biológicos
12.
Am J Bot ; 103(8): 1436-48, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27539260

RESUMO

PREMISE OF THE STUDY: Plant-herbivore networks are highly specialized in their interactions, yet they are highly variable with regard to the relative importance of specific host species for herbivores. How host species traits determine specialization and species strength in this antagonistic network is still an unanswered question that we addressed in this study. METHODS: We assessed plant cover and antiherbivore resistance traits to assess the extent to which they accounted for the variation in specialization and strength of interactions among species in a plant-herbivore network. We studied a tropical antagonistic network including a diverse herbivore-host plant assemblages in different habitat types and climatic seasons, including host plants with different life histories. KEY RESULTS: Particular combinations of leaf toughness, trichome density, and phenolic compounds influenced herbivore specialization and host species strength, but with a significant spatiotemporal variation among plant life histories. Conversely, plant-herbivore network parameters were not influenced by plant cover. CONCLUSIONS: Our study highlights the importance of species-specific resistance traits of plants to understand the ecological and evolutionary consequences of plant-herbivore interaction networks. The novelty of our research lies in the use of a trait-based approach to understand the variation observed in diverse plant-herbivore networks.


Assuntos
Ecossistema , Herbivoria , Folhas de Planta/fisiologia , Antibiose , Evolução Biológica , Cadeia Alimentar , Florestas , México , Densidade Demográfica , Estações do Ano
13.
Biol Lett ; 12(8)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27484648

RESUMO

Mainly owing to their high diversity and abundance, ants are formidable as predators and defenders of foliage. Consequently, ants can exclude both invertebrate and vertebrate activity on plants via direct and indirect interactions as already shown in many previous studies. Here we present empirical evidence that objects resembling ant shape on dummy caterpillars were able to repel visually oriented predators. Moreover, we also show that rubber ants on dummy fruits can repel potential fruit dispersers. Our results have direct implications on the ecological and evolutionary dynamics of interactions in ant-based systems, as ant presence could affect the fitness of its partners. In short, our study highlights the importance of visual cues in interspecific interactions and opens a new way to study the effects of ant presence to test ecological and evolutionary hypotheses.


Assuntos
Frutas , Animais , Insetos , Plantas , Simbiose
15.
Chemistry ; 20(47): 15587-604, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25284044

RESUMO

A study of the scope and limitations of varying the ligand framework around the dinuclear core of FvRu2 in its function as a molecular solar thermal energy storage framework is presented. It includes DFT calculations probing the effect of substituents, other metals, and CO exchange for other ligands on ΔHstorage . Experimentally, the system is shown to be robust in as much as it tolerates a number of variations, except for the identity of the metal and certain substitution patterns. Failures include 1,1',3,3'-tetra-tert-butyl (4), 1,2,2',3'-tetraphenyl (9), diiron (28), diosmium (24), mixed iron-ruthenium (27), dimolybdenum (29), and ditungsten (30) derivatives. An extensive screen of potential catalysts for the thermal reversal identified AgNO3 -SiO2 as a good candidate, although catalyst decomposition remains a challenge.


Assuntos
Alcadienos/química , Complexos de Coordenação/síntese química , Ciclopentanos/química , Metais/química , Energia Solar , Catálise , Complexos de Coordenação/química , Cristalografia por Raios X , Cinética , Conformação Molecular , Termodinâmica
16.
Phys Chem Chem Phys ; 16(22): 10345-52, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24733519

RESUMO

Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested.

17.
Am J Primatol ; 76(7): 670-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24497349

RESUMO

Recently several studies have focused on the structure of ecological networks to provide insights into ecological and coevolutionary dynamics of interacting species. However, rarely have the tools of ecological networks been used to understand how feeding relationships vary among individuals of the same population. Here we use 7 years of data and network analyzed to examine the intrapopulation diet variation in a group of howler monkeys (Alouatta palliata). We show that individual monkey-resource food webs are nested, but not modular and the stability of these patterns is independent of time of day or season. Our findings indicated that individuals do not forage randomly when compared to null models and that the diets of more selective monkeys represent subsets of the diets of other individuals. Moreover, there are no subgroups that eat a particular set of available plant species more frequently than other sets, suggesting that the spatial strategy of group foraging plays an important role in the feeding ecology of each group given that individuals of the same group tend to share similar resources while the group remains at a feeding site. Since the diets of more selective individuals are a subset of other monkeys, we suggest that more selective monkeys are able to outcompete others for preferred foods. Additionally, we did not observe differences in nutritional content or spatial abundance of more frequently eaten plant species when compared with less frequently eaten species, but in most cases, the more frequently eaten plant species were Ficus (Moraceae). This reinforces the important role that Ficus trees play in howler monkey feeding ecology, likely due to its year-round availability.


Assuntos
Alouatta/fisiologia , Dieta , Comportamento Alimentar , Cadeia Alimentar , Animais , México , Modelos Biológicos , Estações do Ano
18.
J Insect Sci ; 14: 189, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25368091

RESUMO

Seasonal dynamics of the capitula infested by Dictyotrypeta sp. and Rhynencina spilogaster (Steyskal) (Diptera: Tephritidae) was evaluated throughout the flowering cycle of their host plant the sunflower, Smallanthus maculatus (Cavanilles) Robinson (Asterales: Asteraceae). In central Veracruz, Mexico, along 16 consecutive weeks, a total of 1,017 mature capitula were collected, recording the presence and abundance of immature stages (larvae and pupae) and their related parasitoids. Both fly species were present throughout the entire season, with overall infestation of 51.5% of the capitula examined. However, Dictyotrypeta sp. infested 11.3%, representing about one-fifth of them, and R. spilogaster was most abundant infesting four times as many capitula (42.9%), whereas both species were found together in only 2.6% of the capitula examined. Based on the temporal occurrence of larvae and pupae into flower heads as well as their associated parasitoids and times of emergence, Dictyotrypeta sp. had two yearly generations, and it seems that the second generation could enter a seasonal diapause; in contrast, R. spilogaster was a univoltine species that entered diapause that lasted until the next year.


Assuntos
Asteraceae/fisiologia , Tephritidae/fisiologia , Tephritidae/parasitologia , Vespas/fisiologia , Animais , Inflorescência/fisiologia , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/fisiologia , México , Pupa/crescimento & desenvolvimento , Pupa/parasitologia , Pupa/fisiologia , Estações do Ano , Especificidade da Espécie , Tephritidae/crescimento & desenvolvimento
19.
Ann Bot ; 111(6): 1277-83, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23609022

RESUMO

BACKGROUND AND AIMS: The oldest group of plants in which nectar secretions have been observed are the Polypodiopsida (ferns sensu lato). Nectaries have been reported in a dozen extant genera. The function of these nectaries has been investigated in several fern species, and in some circumstances has been demonstrated to have an antiherbivore role, attracting and maintaining biotic defence (ants and/or other predatory arthropods). This study documents foliar nectaries in Pleopeltis crassinervata, a widespread Central American epiphyte growing on a variety of trees in cloud forest areas of Veracruz, Mexico. This is a new record for this genus and species. METHODS: As previous experimental work on epiphytic species of Polypodium has demonstrated a protective role of ants for developing fronds, we conducted similar experiments (using nylon nail polish to cover nectaries rather than excluding ants with bands of sticky resin as in earlier work). The fronds of Pl. crassinervata developed over 6 weeks, at which time damage was assessed. The experiment was simultaneously conducted on a sympatric species lacking nectaries, Polypodium furfuraceum. Herbivore placement experiments were conducted with large and small caterpillars on both of these ferns. KEY RESULTS: Fronds with nectaries covered suffered greater damage from herbivores over the course of their development, compared with fronds that had uncovered nectaries functioning normally. The parallel experiment on Po. furfuraceum showed no difference between manipulated and control fronds. Six species of ants (Brachymyrmex minutus, Crematogaster formosa, Paratrechina longicornis, Solenopsis geminata, S. picea and Wasmannia auropunctata) were observed visiting nectaries of Pl. crassinervata; most were effective in removing herbivore larvae placed on the fronds. CONCLUSIONS: The long evolutionary history of ferns may explain why some previous studies of fern nectaries have shown little or no benefit to ferns from nectary visitors, as any coevolved herbivores are those resistant to ant defence. The results suggest that ants protect Pl. crassinervata fronds against herbivory. The presence of nectaries, and the relationship with ants, may contribute to this fern's widespread occurrence and persistence in the face of disturbance, though many other factors also play a role. Ant defence may be more likely to benefit a widespread species of disturbed habitats that encounters a wide range of non-adapted herbivores.


Assuntos
Herbivoria , Néctar de Plantas/metabolismo , Polypodium/fisiologia , Animais , Insetos , Larva , México , Simbiose
20.
Ann Bot ; 111(6): 1285-93, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23704116

RESUMO

BACKGROUND AND AIMS: Functional groups of species interact and coevolve in space and time, forming complex networks of interacting species. A long-term study of temporal variation of an ant-plant network is presented with the aims of: (1) depicting its structural changes over a 20-year period; (2) detailing temporal variation in network topology, as revealed by nestedness and modularity analysis and other parameters (i.e. connectance, niche overlap); and (3) identifying long-term turnover in taxonomic structure (i.e. switches in ant resource use or plant visitor assemblages according to taxa). METHODS: Fieldwork was carried out at La Mancha, Mexico, and ant-plant interactions were observed between 1989 and 1991, between 1998 and 2000, and between May 2010 and 2011. Occurrences of ants on extrafloral nectaries (EFNs) were recorded. The resulting ant-plant networks were constructed from qualitative presence-absence data determined by a species-species matrix defined by the frequency of occurrence of each pairwise ant-plant interaction. KEY RESULTS: Network variation across time was stable and a persistent nested structure may have contributed to the maintenance of resilient and species-rich communities. Modularity was lower than expected, especially in the most recent networks, indicating that the community exhibited high overlap among interacting species (e.g. few species were hubs in the more recent network, being partly responsible for the nested pattern). Structurally, the connections created among modules by super-generalists gave cohesion to subsets of species that otherwise would remain unconnected. This may have allowed an increasing cascade-effect of evolutionary events among modules. Mutualistic ant-plant interactions were structured 20 years ago mainly by the subdominant nectarivorous ant species Camponotus planatus and Crematogaster brevispinosa, which monopolized the best extrafloral nectar resources and out-competed other species with broader feeding habits. Through time, these ants, which are still present, lost their position as network hubs and diminished in their importance in structuring the network; simultaneously, plants gained in importance. CONCLUSIONS: The long-term network analysis reveals a decrease in attended plant species richness, a notable increase in plant species participation from 1990 to 2010 (sustained by less plant taxonomic similarity in the older 1990 network), an increase in the number of ant species and a diminishing dominance of super-generalist ants. The structure of the community has remained highly nested and connected with low modularity, suggesting overall a more participative, homogeneous, cohesive interaction network. Although previous studies have suggested that interactions between ants and EFN-bearing plants are susceptible to seasonality, abiotic factors and perturbation, this cohesive structure appears to be the key for biodiversity and community maintenance.


Assuntos
Formigas , Ecossistema , Magnoliopsida/fisiologia , Simbiose , Animais , México , Néctar de Plantas/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA