Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Oncologist ; 26(11): e1971-e1981, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34286887

RESUMO

BACKGROUND: Characterization of circulating tumor DNA (ctDNA) has been integrated into clinical practice. Although labs have standardized validation procedures to develop single locus tests, the efficacy of on-site plasma-based next-generation sequencing (NGS) assays still needs to be proved. MATERIALS AND METHODS: In this retrospective study, we profiled DNA from matched tissue and plasma samples from 75 patients with cancer. We applied an NGS test that detects clinically relevant alterations in 33 genes and microsatellite instability (MSI) to analyze plasma cell-free DNA (cfDNA). RESULTS: The concordance between alterations detected in both tissue and plasma samples was higher in patients with metastatic disease. The NGS test detected 77% of sequence alterations, amplifications, and fusions that were found in metastatic samples compared with 45% of those alterations found in the primary tumor samples (p = .00005). There was 87% agreement on MSI status between the NGS test and tumor tissue results. In three patients, MSI-high ctDNA correlated with response to immunotherapy. In addition, the NGS test revealed an FGFR2 amplification that was not detected in tumor tissue from a patient with metastatic gastric cancer, emphasizing the importance of profiling plasma samples in patients with advanced cancer. CONCLUSION: Our validation experience of a plasma-based NGS assay advances current knowledge about translating cfDNA testing into clinical practice and supports the application of plasma assays in the management of oncology patients with metastatic disease. With an in-house method that minimizes the need for invasive procedures, on-site cfDNA testing supplements tissue biopsy to guide precision therapy and is entitled to become a routine practice. IMPLICATIONS FOR PRACTICE: This study proposes a solution for decentralized liquid biopsy testing based on validation of a next-generation sequencing (NGS) test that detects four classes of genomic alterations in blood: sequence mutations (single nucleotide substitutions or insertions and deletions), fusions, amplifications, and microsatellite instability (MSI). Although there are reference labs that perform single-site comprehensive liquid biopsy testing, the targeted assay this study validated can be established locally in any lab with capacity to offer clinical molecular pathology assays. To the authors' knowledge, this is the first report that validates evaluating an on-site plasma-based NGS test that detects the MSI status along with common sequence alterations encountered in solid tumors.


Assuntos
DNA Tumoral Circulante , Neoplasias , DNA Tumoral Circulante/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Instabilidade de Microssatélites , Neoplasias/genética , Estudos Retrospectivos
2.
Artigo em Inglês | MEDLINE | ID: mdl-35483877

RESUMO

Sarcomatoid urothelial carcinoma (SUC) is a rare subtype of urothelial carcinoma (UC) that typically presents at an advanced stage compared to more common variants of UC. Locally advanced and metastatic UC have a poor long-term survival following progression on first-line platinum-based chemotherapy. Antibodies directed against the programmed cell death 1 protein (PD-1) or its ligand (PD-L1) are now approved to be used in these scenarios. The need for reliable biomarkers for treatment stratification is still under research. Here, we present a novel case report of the first Imaging Mass Cytometry (IMC) analysis done in SUC to investigate the immune cell repertoire and PD-L1 expression in a patient who presented with metastatic SUC and experienced a prolonged response to the anti-PD1 immune checkpoint inhibitor pembrolizumab after progression on first-line chemotherapy. This case report provides an important platform for translating these findings to a larger cohort of UC and UC variants.


Assuntos
Antineoplásicos Imunológicos , Carcinoma de Células de Transição , Sarcoma , Neoplasias de Tecidos Moles , Neoplasias da Bexiga Urinária , Anticorpos Monoclonais Humanizados , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1 , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/patologia , Feminino , Humanos , Citometria por Imagem , Masculino , Sarcoma/tratamento farmacológico , Microambiente Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia
3.
Cancer Cytopathol ; 129(11): 874-883, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33929788

RESUMO

BACKGROUND: Tumor sample quality and quantity determine the success of somatic mutation analysis. Thus, a rapid on-site evaluation (ROSE) tumor cytology adequacy assessment was incorporated into the workflow of precision oncology at Weill Cornell Medicine in New York City. Optimal samples were obtained from 68 patients with metastatic cancer. METHODS: Cytopathologists performed ROSE on fine-needle aspirate samples via telepathology, and subsequently core-needle biopsies were obtained. In a retrospective manner, the concordance between adequacy assessment and the success rate of the procedure was evaluated to obtain sufficient tumor tissue for next-generation sequencing (NGS). RESULTS: Out of the 68 procedures, 43 were documented as adequate and 25 were documented as inadequate. The diagnostic yield of adequate procedures was 100%. Adequacy evaluation predicted the success rate of molecular profiling in 40 of 43 procedures (93%; 95% CI, 80.9-98.5 procedures). The success rate of molecular testing was significantly higher in the adequate group: 93% compared with 32% in the inadequate group (P < .0005). Seven procedures that failed to provide quality material for mutational analysis and pathological diagnosis were evaluated as inadequate. Cell block provided sufficient DNA for NGS in 6 cases. In 2 cases, a core biopsy could not be performed; hence, the fine-needle aspirate material confirmed the diagnosis and was used for NGS testing. CONCLUSION: These results support the incorporation of ROSE into the workflow of precision oncology to obtain high-quality tissue samples from metastatic lesions. In addition, NGS testing of concurrent cytology specimens with adequate cellularity can be a surrogate for NGS testing of biopsy specimens.


Assuntos
Neoplasias , Biópsia por Agulha Fina/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Medicina de Precisão , Estudos Retrospectivos , Fluxo de Trabalho
4.
Artigo em Inglês | MEDLINE | ID: mdl-31592503

RESUMO

PURPOSE: We developed a precision medicine program for patients with advanced cancer using integrative whole-exome sequencing and transcriptome analysis. PATIENTS AND METHODS: Five hundred fifteen patients with locally advanced/metastatic solid tumors were prospectively enrolled, and paired tumor/normal sequencing was performed. Seven hundred fifty-nine tumors from 515 patients were evaluated. RESULTS: Most frequent tumor types were prostate (19.4%), brain (16.5%), bladder (15.4%), and kidney cancer (9.2%). Most frequently altered genes were TP53 (33%), CDKN2A (11%), APC (10%), KTM2D (8%), PTEN (8%), and BRCA2 (8%). Pathogenic germline alterations were present in 10.7% of patients, most frequently CHEK2 (1.9%), BRCA1 (1.5%), BRCA2 (1.5%), and MSH6 (1.4%). Novel gene fusions were identified, including a RBM47-CDK12 fusion in a metastatic prostate cancer sample. The rate of clinically relevant alterations was 39% by whole-exome sequencing, which was improved by 16% by adding RNA sequencing. In patients with more than one sequenced tumor sample (n = 146), 84.62% of actionable mutations were concordant. CONCLUSION: Integrative analysis may uncover informative alterations for an advanced pan-cancer patient population. These alterations are consistent in spatially and temporally heterogeneous samples.

5.
JAMA Oncol ; 1(4): 466-74, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26181256

RESUMO

IMPORTANCE: Understanding molecular mechanisms of response and resistance to anticancer therapies requires prospective patient follow-up and clinical and functional validation of both common and low-frequency mutations. We describe a whole-exome sequencing (WES) precision medicine trial focused on patients with advanced cancer. OBJECTIVE: To understand how WES data affect therapeutic decision making in patients with advanced cancer and to identify novel biomarkers of response. DESIGN, SETTING, AND PATIENTS: Patients with metastatic and treatment-resistant cancer were prospectively enrolled at a single academic center for paired metastatic tumor and normal tissue WES during a 19-month period (February 2013 through September 2014). A comprehensive computational pipeline was used to detect point mutations, indels, and copy number alterations. Mutations were categorized as category 1, 2, or 3 on the basis of actionability; clinical reports were generated and discussed in precision tumor board. Patients were observed for 7 to 25 months for correlation of molecular information with clinical response. MAIN OUTCOMES AND MEASURES: Feasibility, use of WES for decision making, and identification of novel biomarkers. RESULTS: A total of 154 tumor-normal pairs from 97 patients with a range of metastatic cancers were sequenced, with a mean coverage of 95X and 16 somatic alterations detected per patient. In total, 16 mutations were category 1 (targeted therapy available), 98 were category 2 (biologically relevant), and 1474 were category 3 (unknown significance). Overall, WES provided informative results in 91 cases (94%), including alterations for which there is an approved drug, there are therapies in clinical or preclinical development, or they are considered drivers and potentially actionable (category 1-2); however, treatment was guided in only 5 patients (5%) on the basis of these recommendations because of access to clinical trials and/or off-label use of drugs. Among unexpected findings, a patient with prostate cancer with exceptional response to treatment was identified who harbored a somatic hemizygous deletion of the DNA repair gene FANCA and putative partial loss of function of the second allele through germline missense variant. Follow-up experiments established that loss of FANCA function was associated with platinum hypersensitivity both in vitro and in patient-derived xenografts, thus providing biologic rationale and functional evidence for his extreme clinical response. CONCLUSIONS AND RELEVANCE: The majority of advanced, treatment-resistant tumors across tumor types harbor biologically informative alterations. The establishment of a clinical trial for WES of metastatic tumors with prospective follow-up of patients can help identify candidate predictive biomarkers of response.


Assuntos
Biomarcadores Tumorais/genética , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Exoma , Dosagem de Genes , Testes Genéticos/métodos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Centros Médicos Acadêmicos , Animais , Biologia Computacional , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Estudos de Viabilidade , Feminino , Humanos , Mutação INDEL , Masculino , Camundongos , Terapia de Alvo Molecular , Metástase Neoplásica , Neoplasias/patologia , Seleção de Pacientes , Medicina de Precisão , Valor Preditivo dos Testes , Estudos Prospectivos , Fatores de Tempo , Resultado do Tratamento , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA