Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 128(6): 1148-1154, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36572732

RESUMO

BACKGROUND: Targeted RNA sequencing (RNA-seq) from FFPE specimens is used clinically in cancer for its ability to estimate gene expression and to detect fusions. Using a cohort of NSCLC patients, we sought to determine whether targeted RNA-seq could be used to measure tumour mutational burden (TMB) and the expression of immune-cell-restricted genes from FFPE specimens and whether these could predict response to immune checkpoint blockade. METHODS: Using The Cancer Genome Atlas LUAD dataset, we developed a method for determining TMB from tumour-only RNA-seq and showed a correlation with DNA sequencing derived TMB calculated from tumour/normal sample pairs (Spearman correlation = 0.79, 95% CI [0.73, 0.83]. We applied this method to targeted sequencing data from our patient cohort and validated these results against TMB estimates obtained using an orthogonal assay (Spearman correlation = 0.49, 95% CI [0.24, 0.68]). RESULTS: We observed that the RNA measure of TMB was significantly higher in responders to immune blockade treatment (P = 0.028) and that it was predictive of response (AUC = 0.640 with 95% CI [0.493, 0.786]). By contrast, the expression of immune-cell-restricted genes was uncorrelated with patient outcome. CONCLUSION: TMB calculated from targeted RNA sequencing has a similar diagnostic ability to TMB generated from targeted DNA sequencing.


Assuntos
Antineoplásicos Imunológicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , RNA-Seq , Mutação , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Análise de Sequência de RNA , RNA , Biomarcadores Tumorais/genética
2.
J Neuroinflammation ; 20(1): 306, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115011

RESUMO

BACKGROUND: Excess tumor necrosis factor (TNF) is implicated in the pathogenesis of hyperinflammatory experimental cerebral malaria (eCM), including gliosis, increased levels of fibrin(ogen) in the brain, behavioral changes, and mortality. However, the role of TNF in eCM within the brain parenchyma, particularly directly on neurons, remains underdefined. Here, we investigate electrophysiological consequences of eCM on neuronal excitability and cell signaling mechanisms that contribute to observed phenotypes. METHODS: The split-luciferase complementation assay (LCA) was used to investigate cell signaling mechanisms downstream of tumor necrosis factor receptor 1 (TNFR1) that could contribute to changes in neuronal excitability in eCM. Whole-cell patch-clamp electrophysiology was performed in brain slices from eCM mice to elucidate consequences of infection on CA1 pyramidal neuron excitability and cell signaling mechanisms that contribute to observed phenotypes. Involvement of identified signaling molecules in mediating behavioral changes and sickness behavior observed in eCM were investigated in vivo using genetic silencing. RESULTS: Exploring signaling mechanisms that underlie TNF-induced effects on neuronal excitability, we found that the complex assembly of fibroblast growth factor 14 (FGF14) and the voltage-gated Na+ (Nav) channel 1.6 (Nav1.6) is increased upon tumor necrosis factor receptor 1 (TNFR1) stimulation via Janus Kinase 2 (JAK2). On account of the dependency of hyperinflammatory experimental cerebral malaria (eCM) on TNF, we performed patch-clamp studies in slices from eCM mice and showed that Plasmodium chabaudi infection augments Nav1.6 channel conductance of CA1 pyramidal neurons through the TNFR1-JAK2-FGF14-Nav1.6 signaling network, which leads to hyperexcitability. Hyperexcitability of CA1 pyramidal neurons caused by infection was mitigated via an anti-TNF antibody and genetic silencing of FGF14 in CA1. Furthermore, knockdown of FGF14 in CA1 reduced sickness behavior caused by infection. CONCLUSIONS: FGF14 may represent a therapeutic target for mitigating consequences of TNF-mediated neuroinflammation.


Assuntos
Comportamento de Doença , Malária Cerebral , Camundongos , Animais , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Inibidores do Fator de Necrose Tumoral , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Neurônios/metabolismo , Transdução de Sinais
3.
Crit Care Med ; 51(9): 1111-1123, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37341529

RESUMO

The Society of Critical Care Medicine (SCCM) Reviewer Academy seeks to train and establish a community of trusted, reliable, and skilled peer reviewers with diverse backgrounds and interests to promote high-quality reviews for each of the SCCM journals. Goals of the Academy include building accessible resources to highlight qualities of excellent manuscript reviews; educating and mentoring a diverse group of healthcare professionals; and establishing and upholding standards for insightful and informative reviews. This manuscript will map the mission of the Reviewer Academy with a succinct summary of the importance of peer review, process of reviewing a manuscript, and the expected ethical standards of reviewers. We will equip readers to target concise, thoughtful feedback as peer reviewers, advance their understanding of the editorial process and inspire readers to integrate medical journalism into diverse professional careers.


Assuntos
Tutoria , Revisão por Pares , Humanos , Pessoal de Saúde , Mentores , Grupo Associado , Revisão da Pesquisa por Pares , Sociedades Médicas
4.
Proc Natl Acad Sci U S A ; 117(14): 8143-8153, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32209671

RESUMO

Although major depressive disorder (MDD) is highly prevalent, its pathophysiology is poorly understood. Recent evidence suggests that glycogen-synthase kinase 3ß (GSK3ß) plays a key role in memory formation, yet its role in mood regulation remains controversial. Here, we investigated whether GSK3ß activity in the nucleus accumbens (NAc) is associated with depression-like behaviors and synaptic plasticity. We performed whole-cell patch-clamp recordings of medium spiny neurons (MSNs) in the NAc and determined the role of GSK3ß in spike timing-dependent long-term potentiation (tLTP) in the chronic unpredictable mild stress (CUMS) mouse model of depression. To assess the specific role of GSK3ß in tLTP, we used in vivo genetic silencing by an adeno-associated viral vector (AAV2) short hairpin RNA against GSK3ß. In addition, we examined the role of the voltage-gated potassium Kv4.2 subunit, a molecular determinant of A-type K+ currents, as a potential downstream target of GSK3ß. We found increased levels of active GSK3ß and augmented tLTP in CUMS mice, a phenotype that was prevented by selective GSK3ß knockdown. Furthermore, knockdown of GSK3ß in the NAc ameliorated depressive-like behavior in CUMS mice. Electrophysiological, immunohistochemical, biochemical, and pharmacological experiments revealed that inhibition of the Kv4.2 channel through direct phosphorylation at Ser-616 mediated the GSK3ß-dependent tLTP changes in CUMS mice. Our results identify GSK3ß regulation of Kv4.2 channels as a molecular mechanism of MSN maladaptive plasticity underlying depression-like behaviors and suggest that the GSK3ß-Kv4.2 axis may be an attractive therapeutic target for MDD.


Assuntos
Transtorno Depressivo Maior/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Plasticidade Neuronal , Núcleo Accumbens/patologia , Canais de Potássio Shal/metabolismo , Potenciais de Ação , Animais , Comportamento Animal , Transtorno Depressivo Maior/etiologia , Transtorno Depressivo Maior/psicologia , Modelos Animais de Doenças , Masculino , Camundongos , Neurônios/patologia , Núcleo Accumbens/citologia , Técnicas de Patch-Clamp , Estresse Psicológico/complicações , Estresse Psicológico/psicologia , Fatores de Tempo
5.
FASEB J ; 35(10): e21867, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34499764

RESUMO

Obesity alters skeletal muscle lipidome and promotes myopathy, but it is unknown whether aberrant muscle lipidome contributes to the reduction in skeletal muscle contractile force-generating capacity. Comprehensive lipidomic analyses of mouse skeletal muscle revealed a very strong positive correlation between the abundance of lysophosphatidylcholine (lyso-PC), a class of lipids that is known to be downregulated with obesity, with maximal tetanic force production. The level of lyso-PC is regulated primarily by lyso-PC acyltransferase 3 (LPCAT3), which acylates lyso-PC to form phosphatidylcholine. Tamoxifen-inducible skeletal muscle-specific overexpression of LPCAT3 (LPCAT3-MKI) was sufficient to reduce muscle lyso-PC content in both standard chow diet- and high-fat diet (HFD)-fed conditions. Strikingly, the assessment of skeletal muscle force-generating capacity ex vivo revealed that muscles from LPCAT3-MKI mice were weaker regardless of diet. Defects in force production were more apparent in HFD-fed condition, where tetanic force production was 40% lower in muscles from LPCAT3-MKI compared to that of control mice. These observations were partly explained by reductions in the cross-sectional area in type IIa and IIx fibers, and signs of muscle edema in the absence of fibrosis. Future studies will pursue the mechanism by which LPCAT3 may alter protein turnover to promote myopathy.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/fisiologia , Dieta Hiperlipídica/efeitos adversos , Lipidômica/métodos , Lisofosfatidilcolinas/toxicidade , Músculo Esquelético/patologia , Doenças Musculares/patologia , Obesidade/fisiopatologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular , Músculo Esquelético/efeitos dos fármacos , Doenças Musculares/etiologia , Doenças Musculares/metabolismo
6.
Eur J Clin Pharmacol ; 78(7): 1105-1113, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35426080

RESUMO

PURPOSE: Therapeutic drug monitoring (TDM) is widely recognised as a key attribute of clinical pharmacologists; yet, the extent to which physicians undertaking postgraduate training in clinical pharmacology (hereafter trainees) are involved in TDM is poorly characterised. Our own experience suggests wide variation in trainee exposure to TDM. METHOD: We performed a Europe-wide cross-sectional internet-based survey of trainees to determine the nature and extent of trainee involvement in TDM. RESULTS: There were 43 responses from eight countries analysed. Of the 21 respondents from the UK, all were also training in general internal medicine (GIM), while all of the respondents who were solely training in clinical pharmacology were from outside the UK. Overall, 86.0% of respondents reported access to drug monitoring for clinical care at their affiliated institution, of which 81.0% were personally involved in TDM in some capacity. On average, trainees reported that drug monitoring was available for 16 of the 33 (48%) of the drug/drug classes surveyed. UK-based respondents were involved in requesting drug-level investigations and interpreting the results for patients under their care in 76.2% and 85.7% of cases, respectively, while non-UK respondents supported other healthcare professionals to interpret results in 45.4% of cases. Trainees felt TDM training was generally either insufficient or very inadequate. CONCLUSION: While access to TDM is relatively available at institutions where trainees are based, the role of trainees is variable and affected by a variety of factors including country and training programme. Universally, trainees feel they need more education in TDM.


Assuntos
Farmacologia Clínica , Médicos , Competência Clínica , Estudos Transversais , Monitoramento de Medicamentos , Humanos , Inquéritos e Questionários
7.
J Card Fail ; 27(4): 414-418, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33035686

RESUMO

OBJECTIVE: The present study assessed agreement between resting cardiac output estimated by inert gas rebreathing (IGR) and thermodilution methods in patients with heart failure and those implanted with a left ventricular assist device (LVAD). METHODS AND RESULTS: Hemodynamic measurements were obtained in 42 patients, 22 with chronic heart failure and 20 with implanted continuous flow LVAD (34 males, aged 50 ± 11 years). Measurements were performed at rest using thermodilution and IGR methods. Cardiac output derived by thermodilution and IGR were not significantly different in LVAD (4.4 ± 0.9 L/min vs 4.7 ± 0.8 L/min, P = .27) or patients with heart failure (4.4 ± 1.4 L/min vs 4.5 ± 1.3 L/min, P = .75). There was a strong relationship between thermodilution and IGR cardiac index (r = 0.81, P = .001) and stroke volume index (r = 0.75, P = .001). Bland-Altman analysis showed acceptable limits of agreement for cardiac index derived by thermodilution and IGR, namely, the mean difference (lower and upper limits of agreement) for patients with heart failure -0.002 L/min/m2 (-0.65 to 0.66 L/min/m2), and -0.14 L/min/m2 (-0.78 to 0.49 L/min/m2) for patients with LVAD. CONCLUSIONS: IGR is a valid method for estimating cardiac output and should be used in clinical practice to complement the evaluation and management of chronic heart failure and patients with an LVAD.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Monitorização Hemodinâmica , Débito Cardíaco , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Humanos , Masculino , Termodiluição
8.
Vasc Med ; 26(3): 247-258, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33685287

RESUMO

Critical limb ischemia (CLI) is the most severe manifestation of peripheral artery disease (PAD) and is characterized by high rates of morbidity and mortality. As with most severe cardiovascular disease manifestations, Black individuals disproportionately present with CLI. Accordingly, there remains a clear need to better understand the reasons for this discrepancy and to facilitate personalized therapeutic options specific for this population. Gastrocnemius muscle was obtained from White and Black healthy adult volunteers and patients with CLI for whole transcriptome shotgun sequencing (WTSS) and enrichment analysis was performed to identify alterations in specific Reactome pathways. When compared to their race-matched healthy controls, both White and Black patients with CLI demonstrated similar reductions in nuclear and mitochondrial encoded genes and mitochondrial oxygen consumption across multiple substrates, indicating a common bioenergetic paradigm associated with amputation outcomes regardless of race. Direct comparisons between tissues of White and Black patients with CLI revealed hemostasis, extracellular matrix organization, platelet regulation, and vascular wall interactions to be uniquely altered in limb muscles of Black individuals. Among traditional vascular growth factor signaling targets, WTSS revealed only Tie1 to be significantly altered from White levels in Black limb muscle tissues. Quantitative reverse transcription polymerase chain reaction validation of select identified targets verified WTSS directional changes and supports reductions in MMP9 and increases in NUDT4P1 and GRIK2 as unique to limb muscles of Black patients with CLI. This represents a critical first step in better understanding the transcriptional program similarities and differences between Black and White patients in the setting of amputations related to CLI and provides a promising start for therapeutic development in this population.


Assuntos
Isquemia Crônica Crítica de Membro , Doença Arterial Periférica , Adulto , Amputação Cirúrgica , Estado Terminal , Humanos , Isquemia/diagnóstico , Isquemia/genética , Isquemia/cirurgia , Salvamento de Membro , Músculo Esquelético/cirurgia , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/genética , Doença Arterial Periférica/cirurgia , Fatores Raciais , Fatores de Risco , Resultado do Tratamento
9.
Pediatr Radiol ; 51(12): 2229-2252, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34431006

RESUMO

Gray-scale and color/power Doppler ultrasound (US) are the first-line imaging modalities to evaluate the spleen, gallbladder and pancreas in children. The increasing use of contrast-enhanced ultrasound (CEUS) as a reliable and safe method to evaluate liver lesions in the pediatric population promises potential for imaging other internal organs. Although CEUS applications of the spleen, gallbladder and pancreas have been well described in adults, they have not been fully explored in children. In this manuscript, we present an overview of the applications of CEUS for normal variants and diseases affecting the spleen, gallbladder and pancreas. We highlight a variety of cases as examples of how CEUS can serve in the diagnosis and follow-up for such diseases in children. Our discussion includes specific examination techniques; presentation of the main imaging findings in various benign and malignant lesions of the spleen, gallbladder and pancreas in children; and acknowledgment of the limitations of CEUS for these organs.


Assuntos
Vesícula Biliar , Baço , Adulto , Criança , Meios de Contraste , Vesícula Biliar/diagnóstico por imagem , Humanos , Pâncreas/diagnóstico por imagem , Baço/diagnóstico por imagem , Ultrassonografia
10.
Pediatr Radiol ; 51(12): 2181-2197, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33978801

RESUMO

Contrast-enhanced ultrasound (CEUS) is increasingly being used in children. One of the most common referrals for CEUS performance is characterization of indeterminate focal liver lesions and follow-up of known liver lesions. In this setting, CEUS is performed with intravenous administration of ultrasound contrast agents (UCAs). When injected into a vein, UCA microbubbles remain confined within the vascular network until they dissipate. Therefore, visualization of UCA within the tissues and lesions corresponds to true blood flow. CEUS enables continuous, real-time observation of the enhancement pattern of a focal liver lesion, allowing in most cases for a definite diagnosis and obviating the need for further cross-sectional imaging or other interventional procedures. The recent approval of Lumason (Bracco Diagnostics, Monroe Township, NJ) for pediatric liver CEUS applications has spurred the widespread use of CEUS. In this review article we describe the role of CEUS in pediatric liver applications, focusing on the examination technique and interpretation of main imaging findings of the most commonly encountered benign and malignant focal liver lesions. We also compare the diagnostic performance of CEUS with other imaging modalities for accurate characterization of focal liver lesions.


Assuntos
Neoplasias Hepáticas , Criança , Meios de Contraste , Humanos , Fígado/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Microbolhas , Ultrassonografia
11.
Mod Pathol ; 33(9): 1811-1821, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32358589

RESUMO

There is now evidence that gene fusions activating the MAPK pathway are relatively common in pancreatic acinar cell carcinoma with potentially actionable BRAF or RET fusions being found in ~30%. We sought to investigate the incidence of RAF1 fusions in pancreatic malignancies with acinar cell differentiation. FISH testing for RAF1 was undertaken on 30 tumors comprising 25 'pure' acinar cell carcinomas, 2 mixed pancreatic acinar-neuroendocrine carcinomas, 1 mixed acinar cell-low grade neuroendocrine tumor and 2 pancreatoblastomas. RAF1 rearrangements were identified in 5 cases and confirmed by DNA and RNA sequencing to represent oncogenic fusions (GATM-RAF1, GOLGA4-RAF1, PDZRN3-RAF1, HERPUD1-RAF1 and TRIM33-RAF1) and to be mutually exclusive with BRAF and RET fusions, as well as KRAS mutations. Large genome-wide copy number changes were common and included 1q gain and/or 1p loss in all five RAF1 FISH-positive acinar cell carcinomas. RAF1 expression by immunohistochemistry was found in 3 of 5 (60%) of fusion-positive cases and no FISH-negative cases. Phospho-ERK1/2 expression was found in 4 of 5 RAF1-fusion-positive cases. Expression of both RAF1 and phospho-ERK1/2 was heterogeneous and often only detected at the tumor-stroma interface, thus limiting their clinical utility. We conclude that RAF1 gene rearrangements are relatively common in pancreatic acinar cell carcinomas (14.3% to 18.5% of cases) and can be effectively identified by FISH with follow up molecular testing. The combined results of several studies now indicate that BRAF, RET or RAF1 fusions occur in between one third and one-half of these tumors but are extremely rare in other pancreatic malignancies. As these fusions are potentially actionable with currently available therapies, a strong argument can be made to perform FISH or molecular testing on all pancreatic acinar cell carcinomas.


Assuntos
Carcinoma de Células Acinares/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-raf/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Acinares/patologia , Bases de Dados Factuais , Feminino , Fusão Gênica , Rearranjo Gênico , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia , Adulto Jovem
12.
Cereb Cortex ; 29(5): 1851-1865, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790931

RESUMO

Spike timing-dependent plasticity (STDP) is a form of activity-dependent remodeling of synaptic strength that underlies memory formation. Despite its key role in dictating learning rules in the brain circuits, the molecular mechanisms mediating STDP are still poorly understood. Here, we show that spike timing-dependent long-term depression (tLTD) and A-type K+ currents are modulated by pharmacological agents affecting the levels of active glycogen-synthase kinase 3 (GSK3) and by GSK3ß knockdown in layer 2/3 of the mouse somatosensory cortex. Moreover, the blockade of A-type K+ currents mimics the effects of GSK3 up-regulation on tLTD and occludes further changes in synaptic strength. Pharmacological, immunohistochemical and biochemical experiments revealed that GSK3ß influence over tLTD induction is mediated by direct phosphorylation at Ser-616 of the Kv4.2 subunit, a molecular determinant of A-type K+ currents. Collectively, these results identify the functional interaction between GSK3ß and Kv4.2 channel as a novel mechanism for tLTD modulation providing exciting insight into the understanding of GSK3ß role in synaptic plasticity.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/fisiologia , Canais de Potássio Shal/metabolismo , Córtex Somatossensorial/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fosforilação , Córtex Somatossensorial/metabolismo
13.
Int J Sport Nutr Exerc Metab ; 30(1): 54-61, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31715584

RESUMO

During short-term recovery, postexercise glucose-fructose coingestion can accelerate total glycogen repletion and augment recovery of running capacity. It is unknown if this advantage translates to cycling, or to a longer (e.g., overnight) recovery. Using two experiments, the present research investigated if postexercise glucose-fructose coingestion augments exercise capacity following 4-hr (short experiment; n = 8) and 15-hr (overnight experiment; n = 8) recoveries from exhaustive exercise in trained cyclists, compared with isocaloric glucose alone. In each experiment, a glycogen depleting exercise protocol was followed by a 4-hr recovery, with ingestion of 1.5 or 1.2 g·kg-1·hr-1 carbohydrate in the short experiment (double blind) and the overnight experiment (single blind), respectively. Treatments were provided in a randomized order using a crossover design. Four or fifteen hours after the glycogen depletion protocol, participants cycled to exhaustion at 70% Wmax or 65% Wmax in the short experiment and the overnight experiment, respectively. In both experiments there was no difference in substrate oxidation or blood glucose and lactate concentrations between treatments during the exercise capacity test (trial effect, p > .05). Nevertheless, cycling capacity was greater in glucose + fructose versus glucose only in the short experiment (28.0 ± 8.4 vs. 22.8 ± 7.3 min, d = 0.65, p = .039) and the overnight experiment (35.9 ± 10.7 vs. 30.6 ± 9.2 min, d = 0.53, p = .026). This is the first study to demonstrate that postexercise glucose-fructose coingestion enhances cycling capacity following short-term (4 hr) and overnight (15 hr) recovery durations. Therefore, if multistage endurance athletes are ingesting glucose for rapid postexercise recovery then fructose containing carbohydrates may be advisable.


Assuntos
Bebidas , Ciclismo/fisiologia , Frutose/administração & dosagem , Glucose/administração & dosagem , Resistência Física/fisiologia , Adulto , Glicemia/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Feminino , Frutose/sangue , Glicogênio/metabolismo , Humanos , Ácido Láctico/sangue , Fígado/metabolismo , Masculino , Oxirredução , Método Simples-Cego , Fatores de Tempo , Adulto Jovem
14.
Am J Pathol ; 188(5): 1246-1262, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29454751

RESUMO

Limited efficacy of clinical interventions for peripheral arterial disease necessitates a better understanding of the environmental and genetic determinants of tissue pathology. Existing research has largely ignored the early skeletal muscle injury response during hind limb ischemia (HLI). We compared the hind limb muscle response, after 6 hours of ischemia, in two mouse strains that differ dramatically in their postischemic extended recovery: C57BL/6J and BALB/cJ. Perfusion, measured by laser Doppler and normalized to the control limb, differed only slightly between strains after HLI (<12% across all measures). Similar (<10%) effect sizes in lectin-perfused vessel area and no differences in tissue oxygen saturation measured by reflectance spectroscopy were also found. Muscles from both strains were functionally impaired after HLI, but greater muscle necrosis and loss of dystrophin-positive immunostaining were observed in BALB/cJ muscle compared with C57BL/6J. Muscle cell-specific dystrophin loss and reduced viability were also detected in additional models of ischemia that were independent of residual perfusion differences. Our results indicate that factors other than the completeness of ischemia alone (ie, background genetics) influence the magnitude of acute ischemic muscle injury. These findings may have implications for future development of therapeutic interventions for limb ischemia and for understanding the phasic etiology of chronic and acute ischemic muscle pathophysiology.


Assuntos
Membro Posterior/patologia , Isquemia/patologia , Músculo Esquelético/patologia , Animais , Sobrevivência Celular/fisiologia , Distrofina/metabolismo , Membro Posterior/irrigação sanguínea , Membro Posterior/fisiopatologia , Isquemia/metabolismo , Isquemia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Contração Muscular/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiopatologia , Especificidade da Espécie
15.
J Neurosci ; 37(6): 1378-1393, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28011743

RESUMO

Neuroplasticity in the amygdala drives pain-related behaviors. The central nucleus (CeA) serves major amygdala output functions and can generate emotional-affective behaviors and modulate nocifensive responses. The CeA receives excitatory and inhibitory inputs from the basolateral nucleus (BLA) and serotonin receptor subtype 5-HT2CR in the BLA, but not CeA, has been implicated anxiogenic behaviors and anxiety disorders. Here, we tested the hypothesis that 5-HT2CR in the BLA plays a critical role in CeA plasticity and neuropathic pain behaviors in the rat spinal nerve ligation (SNL) model. Local 5-HT2CR knockdown in the BLA with stereotaxic injection of 5-HT2CR shRNA AAV vector decreased vocalizations and anxiety- and depression-like behaviors and increased sensory thresholds of SNL rats, but had no effect in sham controls. Extracellular single-unit recordings of CeA neurons in anesthetized rats showed that 5-HT2CR knockdown blocked the increase in neuronal activity (increased responsiveness, irregular spike firing, and increased burst activity) in SNL rats. At the synaptic level, 5-HT2CR knockdown blocked the increase in excitatory transmission from BLA to CeA recorded in brain slices from SNL rats using whole-cell patch-clamp conditions. Inhibitory transmission was decreased by 5-HT2CR knockdown in control and SNL conditions to a similar degree. The findings can be explained by immunohistochemical data showing increased expression of 5-HT2CR in non-GABAergic BLA cells in SNL rats. The results suggest that increased 5-HT2CR in the BLA contributes to neuropathic-pain-related amygdala plasticity by driving synaptic excitation of CeA neurons. As a rescue strategy, 5-HT2CR knockdown in the BLA inhibits neuropathic-pain-related behaviors.SIGNIFICANCE STATEMENT Neuroplasticity in the amygdala has emerged as an important pain mechanism. This study identifies a novel target and rescue strategy to control abnormally enhanced amygdala activity in an animal model of neuropathic pain. Specifically, an integrative approach of gene transfer, systems and brain slice electrophysiology, behavior, and immunohistochemistry was used to advance the novel concept that serotonin receptor subtype 5-HT2C contributes critically to the imbalance between excitatory and inhibitory drive of amygdala output neurons. Local viral vector-mediated 5-HT2CR knockdown in the amygdala normalizes the imbalance, decreases neuronal activity, and inhibits neuropathic-pain-related behaviors. The study provides valuable insight into serotonin receptor (dys)function in a limbic brain area.


Assuntos
Tonsila do Cerebelo/metabolismo , Técnicas de Silenciamento de Genes , Neuralgia/metabolismo , Plasticidade Neuronal/fisiologia , Medição da Dor/métodos , Receptor 5-HT2C de Serotonina/deficiência , Animais , Técnicas de Silenciamento de Genes/métodos , Masculino , Aprendizagem em Labirinto/fisiologia , Neuralgia/genética , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2C de Serotonina/genética , Vocalização Animal/fisiologia
16.
Glob Chang Biol ; 24(3): 1123-1135, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29143417

RESUMO

The Antarctic Peninsula, a tundra biome dominated by lichens and bryophytes, is an ecozone undergoing rapid temperature shifts. Such changes may demand a high physiological plasticity of the local lichen species to maintain their role as key drivers in this pristine habitat. This study examines the response of net photosynthesis and respiration to increasing temperatures for three Antarctic lichen species with different ecological response amplitudes. We hypothesize that negative effects caused by increased temperatures can be mitigated by thermal acclimation of respiration and/or photosynthesis. The fully controlled growth chamber experiment simulated intermediate and extreme temperature increases over the time course of 6 weeks. Results showed that, in contrast to our hypothesis, none of the species was able to down-regulate temperature-driven respiratory losses through thermal acclimation of respiration. Instead, severe effects on photobiont vitality demonstrated that temperatures around 15°C mark the upper limit for the two species restricted to the Antarctic, and when mycobiont demands exceeded the photobiont capacity they could not survive within the lichen thallus. In contrast, the widespread lichen species was able to recover its homoeostasis by rapidly increasing net photosynthesis. We conclude that to understand the complete lichen response, acclimation processes of both symbionts, the photo- and the mycobiont, have to be evaluated separately. As a result, we postulate that any acclimation processes in lichen are species-specific. This, together with the high degree of response variability and sensitivity to temperature in different species that co-occur spatially close, complicates any predictions regarding future community composition in the Antarctic. Nevertheless, our results suggest that species with a broad ecological amplitude may be favoured with on-going changes in temperature.


Assuntos
Aclimatação/fisiologia , Líquens/fisiologia , Regiões Antárticas , Mudança Climática , Ecossistema , Fotossíntese/fisiologia , Temperatura
17.
J Pharmacokinet Pharmacodyn ; 45(3): 419-430, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29435949

RESUMO

Amiodarone is a first-line antiarrhythmic for life-threatening ventricular fibrillation or ventricular tachycardia in children, yet little is known about its pharmacokinetics (PK) in this population. We developed a population PK (PopPK) model using samples collected via an opportunistic study design of children receiving amiodarone per standard of care supplemented by amiodarone PK data from the literature. Both study data and literature data were predominantly from infants < 2 years old, so our analysis was restricted to this group. The final combined dataset consisted of 266 plasma drug concentrations in 45 subjects with a median (interquartile range) postnatal age of 40.1 (11.0-120.4) days and weight of 3.9 (3.1-5.1) kg. Since the median sampling time after the first dose was short (study: 95 h; literature: 72 h) relative to the terminal half-life estimated in adult PopPK studies, values of the deep compartment volume and flow were fixed to literature values. A 3-compartment model best described the data and was validated by visual predictive checks and non-parametric bootstrap analysis. The final model included body weight as a covariate on all volumes and on both inter-compartmental and elimination clearances. The empiric Bayesian estimates for clearance (CL), volume of distribution at steady state, and terminal half-life were 0.25 (90% CL 0.14-0.36) L/kg/h, 93 (68-174) L/kg, and 266 (197-477) h, respectively. These studies will provide useful information for future PopPK studies of amiodarone in infants and children that could improve dosage regimens.


Assuntos
Amiodarona/farmacocinética , Amiodarona/administração & dosagem , Teorema de Bayes , Peso Corporal/efeitos dos fármacos , Pré-Escolar , Ensaios Clínicos como Assunto , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Humanos , Lactente , Recém-Nascido , Masculino , Modelos Biológicos , Estudos Prospectivos
18.
Zoo Biol ; 37(6): 434-439, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30457163

RESUMO

Jellyfish are a popular public aquarium species, however, their collection from natural populations is undesirable due to impact on species abundance and bycatch. Thus, a sustainable supply of jellyfish bred in-house would be highly desirable. Here we describe an investigation into developing a sustainable moon jellyfish, Aurelia aurita, breeding program by determining the impact of substrate type on reattachment of polyps and the influence of iodine and temperature on strobilation and ephyra production. To test whether reattachment and growth of moon jellyfish polyps are influenced by substrate type polyps were provided with anthropogenic and natural substrates after being dislodged in experimental aquaria. Polyps selectively re-attached to plastics rather than natural materials. However, polyp growth was similar on all tested substrates. We tested whether cooling and addition of iodine affected strobilation. A period of cooling of around 10 °C while also introducing soluble iodine to the polyps enhanced strobilation rate. This method produced ephyra at a reliable rate in captivity negating the need for collection of wild individuals providing a supply of individuals for exhibit and for conservation research within a public aquarium. These results demonstrate that plastics should be adopted as an easier to colonize substrate and the use of cooling with iodine addition can enhance sustainable breeding protocols of moon jellyfish and may be relevant to the production of comparable jellyfish species.


Assuntos
Cruzamento/métodos , Cifozoários/fisiologia , Temperatura , Animais , Iodo/farmacologia , Plásticos , Cifozoários/efeitos dos fármacos
20.
J Mol Cell Cardiol ; 97: 191-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27262673

RESUMO

Critical limb ischemia is a devastating manifestation of peripheral arterial disease with no effective strategies for improving morbidity and mortality outcomes. We tested the hypothesis that cellular mitochondrial function is a key component of limb pathology and that improving mitochondrial function represents a novel paradigm for therapy. BALB/c mice were treated with a therapeutic mitochondrial-targeting peptide (MTP-131) and subjected to limb ischemia (HLI). Compared to vehicle control, MTP-131 rescued limb muscle capillary density and blood flow (64.7±11% of contralateral vs. 39.9±4%), and improved muscle regeneration. MTP-131 also increased electron transport system flux across all conditions at HLI day-7. In vitro, primary muscle cells exposed to experimental ischemia demonstrated markedly reduced (~75%) cellular respiration, which was rescued by MTP-131 during a recovery period. Compared to muscle cells, endothelial cell (HUVEC) respiration was inherently protected from ischemia (~30% reduction), but was also enhanced by MTP-131. These findings demonstrate an important link between ischemic tissue bioenergetics and limb blood flow and indicate that the mitochondria may be a pharmaceutical target for therapeutic intervention during critical limb ischemia.


Assuntos
Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Isquemia/complicações , Isquemia/metabolismo , Mitocôndrias Musculares/metabolismo , Doenças Musculares/etiologia , Animais , Respiração Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células Endoteliais , Humanos , Masculino , Camundongos , Doenças Musculares/patologia , Doenças Musculares/terapia , Necrose , Oligopeptídeos/farmacologia , Peptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA