Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
PLoS Genet ; 19(10): e1010990, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792893

RESUMO

Genetic triggers for sex determination are frequently co-inherited with other linked genes that may also influence one or more sex-specific phenotypes. To better understand how sex-limited regions evolve and function, we studied a small W chromosome-specific region of the frog Xenopus laevis that contains only three genes (dm-w, scan-w, ccdc69-w) and that drives female differentiation. Using gene editing, we found that the sex-determining function of this region requires dm-w but that scan-w and ccdc69-w are not essential for viability, female development, or fertility. Analysis of mesonephros+gonad transcriptomes during sexual differentiation illustrates masculinization of the dm-w knockout transcriptome, and identifies mostly non-overlapping sets of differentially expressed genes in separate knockout lines for each of these three W-specific gene compared to wildtype sisters. Capture sequencing of almost all Xenopus species and PCR surveys indicate that the female-determining function of dm-w is present in only a subset of species that carry this gene. These findings map out a dynamic evolutionary history of a newly evolved W chromosome-specific genomic region, whose components have distinctive functions that frequently degraded during Xenopus diversification, and evidence the evolutionary consequences of recombination suppression.


Assuntos
Processos de Determinação Sexual , Fatores de Transcrição , Animais , Masculino , Feminino , Xenopus laevis/metabolismo , Fatores de Transcrição/genética , Processos de Determinação Sexual/genética , Genômica , Cromossomos/genética , Cromossomos/metabolismo
2.
Mol Phylogenet Evol ; 180: 107700, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36603697

RESUMO

The highly diverse snake superfamily Elapoidea is considered to be a classic example of ancient, rapid radiation. Such radiations are challenging to fully resolve phylogenetically, with the highly diverse Elapoidea a case in point. Previous attempts at inferring a phylogeny of elapoids produced highly incongruent estimates of their evolutionary relationships, often with very low statistical support. We sought to resolve this situation by sequencing over 4,500 ultraconserved element loci from multiple representatives of every elapoid family/subfamily level taxon and inferring their phylogenetic relationships with multiple methods. Concatenation and multispecies coalescent based species trees yielded largely congruent and well-supported topologies. Hypotheses of a hard polytomy were not retained for any deep branches. Our phylogenies recovered Cyclocoridae and Elapidae as diverging early within Elapoidea. The Afro-Malagasy radiation of elapoid snakes, classified as multiple subfamilies of an inclusive Lamprophiidae by some earlier authors, was found to be monophyletic in all analyses. The genus Micrelaps was consistently recovered as sister to Lamprophiidae. We establish a new family, Micrelapidae fam. nov., for Micrelaps and assign Brachyophis to this family based on cranial osteological synapomorphy. We estimate that Elapoidea originated in the early Eocene and rapidly diversified into all the major lineages during this epoch. Ecological opportunities presented by the post-Cretaceous-Paleogene mass extinction event may have promoted the explosive radiation of elapoid snakes.


Assuntos
Evolução Biológica , Serpentes , Animais , Filogenia , Serpentes/genética
3.
Mol Ecol ; 31(15): 3979-3998, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34516675

RESUMO

Secondary sympatry amongst sister lineages is strongly associated with genetic and ecological divergence. This pattern suggests that for closely related species to coexist in secondary sympatry, they must accumulate differences in traits that mediate ecological and/or reproductive isolation. Here, we characterized inter- and intraspecific divergence in three giant tree frog species whose distributions stretch across West and Central Africa. Using genome-wide single-nucleotide polymorphism data, we demonstrated that species-level divergence coincides temporally and geographically with a period of large-scale forest fragmentation during the late Pliocene. Our environmental niche models further supported a dynamic history of climatic suitability and stability, and indicated that all three species occupy distinct environmental niches. We found modest morphological differentiation amongst the species with significant divergence in tympanum diameter and male advertisement call. In addition, we confirmed that two species occur in secondary sympatry in Central Africa but found no evidence of hybridization. These patterns support the hypothesis that cycles of genetic exchange and isolation across West and Central Africa have contributed to globally significant biodiversity. Furthermore, divergence in both ecology and reproductive traits appear to have played important roles in maintaining distinct lineages. At the intraspecific level, we found that climatic refugia, precipitation gradients, marine incursions, and potentially riverine barriers generated phylogeographic structure throughout the Pleistocene and into the Holocene. Further studies examining phenotypic divergence and secondary contact amongst these geographically structured populations may demonstrate how smaller scale and more recent biogeographic barriers contribute to regional diversification.


La sympatrie secondaire parmi les espèces sœurs est fortement associée à la divergence génétique et écologique. Ce modèle suggère que pour que des espèces étroitement liées coexistent en sympatrie secondaire, elles doivent accumuler des différences dans les traits qui contribuent à l'isolement écologique ou reproductif. Ici, nous avons caractérisé la divergence inter- et intra-spécifique chez trois espèces de grenouilles arboricoles géantes dont les distributions s'étendent à travers l'Afrique de l'Ouest et Centrale. Avec des données génétiques, nous avons démontré que la divergence au niveau des espèces coïncide temporellement et géographiquement avec une période de fragmentation forestière à la fin du Pliocène. Nos modèles de niches environnementales ont soutenu une histoire dynamique de stabilité climatique, et ont indiqué que les trois espèces occupent des niches environnementales distinctes. Nous avons trouvé une différenciation morphologique modeste parmi les trois espèces mais une divergence significative dans le diamètre du tympan et les cris des mâles. De plus, nous avons confirmé que deux espèces sont présentes en sympatrie secondaire en Afrique Centrale mais n'avons trouvé aucune preuve d'hybridation. Ces résultats soutiennent l'hypothèse que les cycles d'échange génétique et d'isolement à travers l'Afrique de l'Ouest et Centrale ont contribué à une profonde concentration de biodiversité dans la région. De plus, la divergence des traits écologiques et reproducteurs semble avoir joué un rôle important dans le maintien de lignées distinctes. Au niveau intra-spécifique, nous avons constaté que les refuges climatiques, les gradients de précipitation, les incursions marines et potentiellement les barrières fluviales ont généré une structure phylogéographique pendant le Pléistocène et jusqu'à l'Holocène. Des études examinant la divergence phénotypique et le contact secondaire entre ces populations géographiquement structurées pourraient démontrer comment des barrières biogéographiques à échelle plus petite et plus récentes contribuent à la diversification régionale.


Assuntos
Anuros , Biodiversidade , África Central , Animais , Anuros/genética , DNA Mitocondrial/genética , Florestas , Variação Genética , Masculino , Filogenia , Filogeografia , Ranidae/genética
4.
J Evol Biol ; 35(12): 1675-1682, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35665979

RESUMO

Sex-determination systems are highly variable amongst vertebrate groups, and the prevalence of genomic data has greatly expanded our knowledge of how diverse some groups truly are. Gecko lizards are known to possess a variety of sex-determination systems, and each new study increases our knowledge of this diversity. Here, we used RADseq to identify male-specific markers in the banded gecko Coleonyx brevis, indicating this species has a XX/XY sex-determination system. Furthermore, we show that these sex-linked regions are not homologous to the XX/XY sex chromosomes of two related Coleonyx species, C. elegans and C. mitratus, suggesting that a cis-sex chromosome turnover-a change in sex chromosomes without a concomitant change in heterogamety-has occurred within the genus. These findings demonstrate the utility of genome-scale data to uncover novel sex chromosomes and further highlight the diversity of gecko sex chromosomes.


Assuntos
Caenorhabditis elegans , Lagartos , Animais , Masculino , Caenorhabditis elegans/genética , Cromossomos Sexuais/genética , Lagartos/genética , Genoma , Genômica , Processos de Determinação Sexual
5.
Mol Biol Evol ; 37(3): 799-810, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710681

RESUMO

Phenotypic invariance-the outcome of purifying selection-is a hallmark of biological importance. However, invariant phenotypes might be controlled by diverged genetic systems in different species. Here, we explore how an important and invariant phenotype-the development of sexually differentiated individuals-is controlled in over two dozen species in the frog family Pipidae. We uncovered evidence in different species for 1) an ancestral W chromosome that is not found in many females and is found in some males, 2) independent losses and 3) autosomal segregation of this W chromosome, 4) changes in male versus female heterogamy, and 5) substantial variation among species in recombination suppression on sex chromosomes. We further provide evidence of, and evolutionary context for, the origins of at least seven distinct systems for regulating sex determination among three closely related genera. These systems are distinct in their genomic locations, evolutionary origins, and/or male versus female heterogamy. Our findings demonstrate that the developmental control of sexual differentiation changed via loss, sidelining, and empowerment of a mechanistically influential gene, and offer insights into novel factors that impinge on the diverse evolutionary fates of sex chromosomes.


Assuntos
Pipidae/fisiologia , Cromossomos Sexuais/genética , Animais , Evolução Biológica , Evolução Molecular , Feminino , Deriva Genética , Masculino , Fenótipo , Pipidae/genética , Recombinação Genética , Seleção Genética , Processos de Determinação Sexual , Diferenciação Sexual
6.
Syst Biol ; 68(6): 859-875, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31140573

RESUMO

Theory predicts that sexually dimorphic traits under strong sexual selection, particularly those involved with intersexual signaling, can accelerate speciation and produce bursts of diversification. Sexual dichromatism (sexual dimorphism in color) is widely used as a proxy for sexual selection and is associated with rapid diversification in several animal groups, yet studies using phylogenetic comparative methods to explicitly test for an association between sexual dichromatism and diversification have produced conflicting results. Sexual dichromatism is rare in frogs, but it is both striking and prevalent in African reed frogs, a major component of the diverse frog radiation termed Afrobatrachia. In contrast to most other vertebrates, reed frogs display female-biased dichromatism in which females undergo color transformation, often resulting in more ornate coloration in females than in males. We produce a robust phylogeny of Afrobatrachia to investigate the evolutionary origins of sexual dichromatism in this radiation and examine whether the presence of dichromatism is associated with increased rates of net diversification. We find that sexual dichromatism evolved once within hyperoliids and was followed by numerous independent reversals to monochromatism. We detect significant diversification rate heterogeneity in Afrobatrachia and find that sexually dichromatic lineages have double the average net diversification rate of monochromatic lineages. By conducting trait simulations on our empirical phylogeny, we demonstrate that our inference of trait-dependent diversification is robust. Although sexual dichromatism in hyperoliid frogs is linked to their rapid diversification and supports macroevolutionary predictions of speciation by sexual selection, the function of dichromatism in reed frogs remains unclear. We propose that reed frogs are a compelling system for studying the roles of natural and sexual selection on the evolution of sexual dichromatism across micro- and macroevolutionary timescales.


Assuntos
Anuros/classificação , Filogenia , Pigmentação , África , Animais , Anuros/fisiologia , Evolução Biológica , Feminino , Masculino , Caracteres Sexuais
7.
Mol Phylogenet Evol ; 130: 357-365, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366085

RESUMO

The African green and bush snakes of the genus Philothamnus currently comprises 21 species and three subspecies and occurs throughout sub-Saharan Africa. The genus has been the subject of previous taxonomic revisions based on traditional morphological characters and limited genetic assessment, and may not reflect their evolutionary history. Indeed, previous findings based on phylogenetics show discordant results of interspecific relationships and question the monophyly of the genus, although taxon sampling has been limited to date. We investigated phylogenetic affinities within Philothamnus with more inclusive genetic and geographical sampling, with the aim of better understanding their evolutionary history, so that future taxonomic revision of Philothamnus can be better informed. Species relationships were examined within a phylogenetic context and sampling included 133 ingroup samples from 16 taxa. Phylogenies were constructed in Bayesian and likelihood frameworks using three mitochondrial (16S, cyt b and ND4) and two nuclear (c-mos and RAG1) markers. Competing hypotheses relating to the monophyly of the genus were tested with a Shimodaira-Hasegawa test. To examine species boundaries, Bayesian General Mixed Yule-Coalescent Model and multi-rate Poisson Tree Processes analyses were conducted. In addition, a barcoding approach was used to further clarify species-level relationships by comparing frequency distributions between intra- and interspecific sequence divergence. The genus was recovered as monophyletic; however, species-delimitation results suggest that the current taxonomy does not reflect the evolutionary history of this group. For example, Philothamnus s. semivariegatus is paraphyletic, with at least four distinct clades. Philothamnus carinatus consists of two cryptic (sister) lineages from Central and West Africa that are deeply divergent, suggesting a long history of isolation between those regions. Furthermore, the subspecies P. n. natalensis and P. n. occidentalis show strong support for species-level divergence, which reflects their morphological and ecological differences. Accordingly, we elevate P. occidentalisnov. comb. to a full species. A fully informed taxonomic revision of these taxa will require additional morphological and ecological data for corroboration, but it seems that the morphological characters (e.g. scalation, dentition) used to describe these species to date are labile within and between species. This most likely has clouded our understanding of the species boundaries within the genus. Our phylogeny and species-delimitation analyses should provide a sounder framework for taxonomy, but may also prove useful toward understanding the morphological adaptations of these species to their respective habitats.


Assuntos
Colubridae/genética , Variação Genética , África Ocidental , Animais , Teorema de Bayes , Geografia , Funções Verossimilhança , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
8.
Mol Phylogenet Evol ; 122: 125-141, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29199108

RESUMO

Several biogeographic barriers in the Central African highlands have reduced gene flow among populations of many terrestrial species in predictable ways. Yet, a comprehensive understanding of mechanisms underlying species divergence in the Afrotropics can be obscured by unrecognized levels of cryptic diversity, particularly in widespread species. We implemented a multilocus phylogeographic approach to examine diversity within the widely distributed Central African pygmy chameleon, Rhampholeon boulengeri. Gene-tree analyses coupled with a comparative coalescent-based species delimitation framework revealed R. boulengeri as a complex of at least six genetically distinct species. The spatiotemporal speciation patterns for these cryptic species conform to general biogeographic hypotheses supporting vicariance as the main factor behind patterns of divergence in the Albertine Rift, a biodiversity hotspot in Central Africa. However, we found that parapatric species and sister species inhabited adjacent habitats, but were found in largely non-overlapping elevational ranges in the Albertine Rift, suggesting that differentiation in elevation was also an important mode of divergence. The phylogeographic patterns recovered for the genus-level phylogeny provide additional evidence for speciation by isolation in forest refugia, and dating estimates indicated that the Miocene was a significant period for this diversification. Our results highlight the importance of investigating cryptic diversity in widespread species to improve understanding of diversification patterns in environmentally diverse regions such as the montane Afrotropics.


Assuntos
Biodiversidade , Lagartos/classificação , África Central , Animais , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , DNA Mitocondrial/genética , Ecossistema , Fluxo Gênico , Lagartos/genética , Filogenia , Filogeografia , Análise de Sequência de DNA
9.
Mol Phylogenet Evol ; 120: 274-285, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29246817

RESUMO

Frogs in the genus Amnirana (family Ranidae) are widely distributed across sub-Saharan Africa and present a model system for exploring the relationship between diversification and geography across the continent. Using multiple loci from the mitochondrial (16S) and nuclear genomes (DISP2, FICD, KIAA2013, REV3L), we generated a strongly supported species-level phylogeny that provides insights into the continental biogeography of African species of Amnirana, which form a monophyletic group within the genus. Species delimitation analyses suggest that there may be as many as seven additional species of Amnirana in Africa. The biogeographic history of Amnirana is marked by several dispersal and vicariance events, including dispersal from the Lower Guinean Forest into the Congo Basin. In addition, phylogeographic patterns within two widespread species, A. albolabris and A. galamensis, reveal undescribed cryptic diversity. Populations assigned to A. albolabris in western Africa are more closely related to A. fonensis and require recognition as a distinct species. Our analyses reveal that the Lower and Upper Guinean Forest regions served as important centers of interspecific and intraspecific diversifications for Amnirana.


Assuntos
Anuros/classificação , Biodiversidade , Filogenia , África Subsaariana , Proteínas de Anfíbios/classificação , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Anuros/genética , DNA/classificação , DNA/isolamento & purificação , DNA/metabolismo , DNA Mitocondrial/classificação , DNA Mitocondrial/isolamento & purificação , DNA Mitocondrial/metabolismo , Evolução Molecular , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Filogeografia , Análise de Sequência de DNA
10.
Mol Phylogenet Evol ; 127: 288-303, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29551523

RESUMO

Members of the snake subfamily Aparallactinae occur in various habitats throughout sub-Saharan Africa. The monophyly of aparallactine snakes is well established, but relationships within the subfamily are poorly known. We sampled 158 individuals from six of eight aparallactine genera in sub-Saharan Africa. We employed concatenated gene-tree analyses, divergence dating approaches, and ancestral-area reconstructions to infer phylogenies and biogeographic patterns with a multi-locus data set consisting of three mitochondrial (16S, cyt b, and ND4) and two nuclear genes (c-mos and RAG1). As a result, we uncover several cryptic lineages and elevate a lineage of Polemon to full species status. Diversification occurred predominantly during the Miocene, with a few speciation events occurring subsequently in the Pliocene and Pleistocene. Biogeographic analyses suggested that the Zambezian biogeographic region, comprising grasslands and woodlands, facilitated radiations, vicariance, and dispersal for many aparallactines. Moreover, the geographic distributions of many forest species were fragmented during xeric and cooler conditions, which likely led to diversification events. Biogeographic patterns of aparallactine snakes are consistent with previous studies of other sub-Saharan herpetofauna.


Assuntos
Clima Desértico , Lagartos/anatomia & histologia , Lagartos/classificação , Filogenia , Filogeografia , África Subsaariana , Animais , DNA Mitocondrial/genética , Funções Verossimilhança , Lagartos/genética , Serpentes/anatomia & histologia , Serpentes/genética
11.
Mol Ecol ; 26(19): 5223-5244, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28753250

RESUMO

Organismal traits interact with environmental variation to mediate how species respond to shared landscapes. Thus, differences in traits related to dispersal ability or physiological tolerance may result in phylogeographic discordance among co-distributed taxa, even when they are responding to common barriers. We quantified climatic suitability and stability, and phylogeographic divergence within three reed frog species complexes across the Guineo-Congolian forests and Gulf of Guinea archipelago of Central Africa to investigate how they responded to a shared climatic and geological history. Our species-specific estimates of climatic suitability through time are consistent with temporal and spatial heterogeneity in diversification among the species complexes, indicating that differences in ecological breadth may partly explain these idiosyncratic patterns. Likewise, we demonstrated that fluctuating sea levels periodically exposed a land bridge connecting Bioko Island with the mainland Guineo-Congolian forest and that habitats across the exposed land bridge likely enabled dispersal in some species, but not in others. We did not find evidence that rivers are biogeographic barriers across any of the species complexes. Despite marked differences in the geographic extent of stable climates and temporal estimates of divergence among the species complexes, we recovered a shared pattern of intermittent climatic suitability with recent population connectivity and demographic expansion across the Congo Basin. This pattern supports the hypothesis that genetic exchange across the Congo Basin during humid periods, followed by vicariance during arid periods, has shaped regional diversity. Finally, we identified many distinct lineages among our focal taxa, some of which may reflect incipient or unrecognized species.


Assuntos
Anuros/classificação , Evolução Biológica , Mudança Climática , Florestas , Filogenia , África Central , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Feminino , Guiné , Ilhas , Masculino , Modelos Biológicos , Fenótipo , Filogeografia
12.
Mol Phylogenet Evol ; 106: 254-269, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664344

RESUMO

The Mascarene ridged frog, Ptychadena mascareniensis, is a species complex that includes numerous lineages occurring mostly in humid savannas and open forests of mainland Africa, Madagascar, the Seychelles, and the Mascarene Islands. Sampling across this broad distribution presents an opportunity to examine the genetic differentiation within this complex and to investigate how the evolution of bioclimatic niches may have shaped current biogeographic patterns. Using model-based phylogenetic methods and molecular-clock dating, we constructed a time-calibrated molecular phylogenetic hypothesis for the group based on mitochondrial 16S rRNA and cytochrome b (cytb) genes and the nuclear RAG1 gene from 173 individuals. Haplotype networks were reconstructed and species boundaries were investigated using three species-delimitation approaches: Bayesian generalized mixed Yule-coalescent model (bGMYC), the Poisson Tree Process model (PTP) and a cluster algorithm (SpeciesIdentifier). Estimates of similarity in bioclimatic niche were calculated from species-distribution models (maxent) and multivariate statistics (Principal Component Analysis, Discriminant Function Analysis). Ancestral-area reconstructions were performed on the phylogeny using probabilistic approaches implemented in BioGeoBEARS. We detected high levels of genetic differentiation yielding ten distinct lineages or operational taxonomic units, and Central Africa was found to be a diversity hotspot for these frogs. Most speciation events took place throughout the Miocene, including "out-of-Africa" overseas dispersal events to Madagascar in the East and to São Tomé in the West. Bioclimatic niche was remarkably well conserved, with most species tolerating similar temperature and rainfall conditions common to the Central African region. The P. mascareniensis complex provides insights into how bioclimatic niche shaped the current biogeographic patterns with niche conservatism being exhibited by the Central African radiation and niche divergence shaping populations in West Africa and Madagascar. Central Africa, including the Albertine Rift region, has been an important center of diversification for this species complex.


Assuntos
Ranidae/classificação , África , Animais , Teorema de Bayes , Citocromos b/classificação , Citocromos b/genética , Citocromos b/metabolismo , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Ecologia , Haplótipos , Proteínas de Homeodomínio/classificação , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Madagáscar , Filogenia , Filogeografia , Análise de Componente Principal , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ranidae/genética , Análise de Sequência de DNA
14.
Mol Phylogenet Evol ; 99: 168-181, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27026115

RESUMO

The African river frog genus Amietia is found near rivers and other lentic water sources throughout central, eastern, and southern Africa. Because the genus includes multiple morphologically conservative species, taxonomic studies of river frogs have been relatively limited. We sampled 79 individuals of Amietia from multiple localities in and near the Albertine Rift (AR) of Burundi, Democratic Republic of the Congo, and Uganda. We utilized single-gene (16S) and concatenated (12S, 16S, cyt b and RAG1) gene-tree analyses and coalescent species-tree analyses to construct phylogenetic trees. Two divergence dating approaches were used in BEAST, including secondary calibration points with 12S, 16S, cyt b and RAG1, and a molecular clock with the 12S, 16S, and cyt b genes. All analyses recovered Amietia as monophyletic with strong support, and revealed several well-supported cryptic lineages, which is consistent with other recent phylogeography studies of AR amphibians. Dating estimates were similar, and Amietia diversification is coincident with global cooling and aridification events in the Miocene and Pliocene, respectively. Our results suggest additional taxonomic work is needed to describe multiple new species of AR Amietia, some of which have limited geographic distributions that are likely to be of conservation concern.


Assuntos
Anuros/classificação , Evolução Biológica , Animais , Anuros/genética , Biodiversidade , Congo , Citocromos b/genética , Proteínas de Homeodomínio/genética , Filogenia , Filogeografia , RNA Ribossômico/genética , RNA Ribossômico 16S/genética , Rios
15.
Mol Phylogenet Evol ; 94(Pt B): 591-604, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26475616

RESUMO

Previous studies of color pattern, tongue pigmentation, and scale counts have been used to distinguish two species of semiaquatic varanids in Africa, but these findings have yet to be tested with molecular data. The Varanus (Polydaedalus) niloticus Species Group is comprised of the Nile monitor (V. niloticus) and the Ornate monitor (V. ornatus). Due to the high rate of exploitation of both species for bushmeat, the leather industry, and the pet trade, a clear understanding of the taxonomy and genetic partitioning is necessary for effective management. Here we utilize a multilocus approach, consisting of mitochondrial and nuclear markers, totaling 4251 bp, as well as microsatellite loci to assess the taxonomic validity and intraspecific evolutionary patterns within the V. niloticus Species Group. By incorporating historical specimens from museum collections as well as contemporary samples, we obtained range-wide coverage for both species across Africa. Concordant results from various approaches all suggest that V. ornatus does not represent a distinct monophyletic group. Our analyses recovered three genetic clades within V. niloticus, representing western, northern, and southern lineages. The western clade was found to diverge first, around 7.7 mya (95% HPD: 4.6-11.0 mya) and exhibits 8.4% and 8.7% uncorrected sequence divergence between the northern and southern V. niloticus clades, respectively. This geographically separate lineage corresponds to previous descriptions of Tupinambis stellatusDaudin (1802). These findings not only call for taxonomic revision of this species group, but also shed light on the biogeographic history of Africa as well as aid in the management planning of varanids and other co-distributed African species.


Assuntos
Variação Genética/genética , Lagartos/genética , África , Animais , Evolução Molecular , Repetições de Microssatélites , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
16.
Mol Phylogenet Evol ; 100: 409-423, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27118179

RESUMO

African snake-eyed skinks are relatively small lizards of the genera Panaspis and Afroablepharus. Species allocation of these genera frequently changed during the 20th century based on morphology, ecology, and biogeography. Members of these genera occur primarily in savanna habitats throughout sub-Saharan Africa and include species whose highly conserved morphology poses challenges for taxonomic studies. We sequenced two mitochondrial (16S and cyt b) and two nuclear genes (PDC and RAG1) from 76 Panaspis and Afroablepharus samples from across eastern, central, and southern Africa. Concatenated gene-tree and divergence-dating analyses were conducted to infer phylogenies and biogeographic patterns. Molecular data sets revealed several cryptic lineages, with most radiations occurring during the mid-Miocene to Pliocene. We infer that rifting processes (including the formation of the East African Rift System) and climatic oscillations contributed to the expansion and contraction of savannas, and caused cladogenesis in snake-eyed skinks. Species in Panaspis and Afroablepharus used in this study, including type species for both genera, formed a monophyletic group. As a result, the latter genus should be synonymized with the former, which has priority. Conservatively, we continue to include the West African species P. breviceps and P. togoensis within an expanded Panaspis, but note that they occur in relatively divergent clades, and their taxonomic status may change with improved taxon sampling. Divergence estimates and cryptic speciation patterns of snake-eyed skinks were consistent with previous studies of other savanna vertebrate lineages from the same areas examined in this study.


Assuntos
Lagartos/genética , África Subsaariana , África Austral , Animais , Anuros/genética , Sequência de Bases , DNA Mitocondrial/genética , Evolução Molecular , Especiação Genética , Pradaria , Lagartos/classificação , Tipagem de Sequências Multilocus , Filogenia , Proteínas de Répteis/genética
17.
Mol Ecol ; 24(4): 909-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25583226

RESUMO

The African clawed frog Xenopus laevis has a large native distribution over much of sub-Saharan Africa and is a model organism for research, a proposed disease vector, and an invasive species. Despite its prominent role in research and abundance in nature, surprisingly little is known about the phylogeography and evolutionary history of this group. Here, we report an analysis of molecular variation of this clade based on 17 loci (one mitochondrial, 16 nuclear) in up to 159 individuals sampled throughout its native distribution. Phylogenetic relationships among mitochondrial DNA haplotypes were incongruent with those among alleles of the putatively female-specific sex-determining gene DM-W, in contrast to the expectation of strict matrilineal inheritance of both loci. Population structure and evolutionarily diverged lineages were evidenced by analyses of molecular variation in these data. These results further contextualize the chronology, and evolutionary relationships within this group, support the recognition of X. laevis sensu stricto, X. petersii, X. victorianus and herein revalidated X. poweri as separate species. We also propose that portions of the currently recognized distributions of X. laevis (north of the Congo Basin) and X. petersii (south of the Congo Basin) be reassigned to X. poweri.


Assuntos
Evolução Biológica , Genética Populacional , Filogenia , Xenopus laevis/classificação , África Subsaariana , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Feminino , Loci Gênicos , Haplótipos , Padrões de Herança , Modelos Genéticos , Dados de Sequência Molecular , Filogeografia , Análise de Sequência de DNA
18.
Mol Phylogenet Evol ; 82 Pt A: 75-86, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25291074

RESUMO

The genus Leptopelis occurs in multiple habitats throughout sub-Saharan Africa, and it includes several species that have highly variable color patterns, which makes taxonomic studies challenging. In this study, we examined multiple populations of Leptopelis from the Albertine Rift (AR), a region known for its high levels of endemism and biodiversity. Currently, five species are recognized from the AR: L. anebos, L. fiziensis, L. karissimbensis, L. kivuensis, and L. mtoewaate, most of which are found in and around the Itombwe Plateau in Democratic Republic of the Congo (DRC). We sampled 90 individuals of Leptopelis from multiple localities in DRC, Uganda, Rwanda and Burundi. We employed concatenated gene-tree analyses, coalescent species-tree analyses, and divergence dating approaches to infer phylogenies and biogeographic patterns with a multi-locus data set consisting of two mitochondrial (16S and cyt b) and one nuclear gene (RAG1). All analyses revealed several cryptic lineages within the genus, suggesting that a revision of AR Leptopelis taxonomy is needed.


Assuntos
Anuros/classificação , Evolução Biológica , Filogenia , África Oriental , Animais , Teorema de Bayes , Biodiversidade , DNA Mitocondrial/genética , República Democrática do Congo , Ecossistema , Funções Verossimilhança , Modelos Genéticos , Filogeografia , Análise de Sequência de DNA
19.
Mol Phylogenet Evol ; 79: 215-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24973715

RESUMO

Africa is renowned for its biodiversity and endemicity, yet little is known about the factors shaping them across the continent. African Agama lizards (45 species) have a pan-continental distribution, making them an ideal model for investigating biogeography. Many species have evolved conspicuous sexually dimorphic traits, including extravagant breeding coloration in adult males, large adult male body sizes, and variability in social systems among colorful versus drab species. We present a comprehensive time-calibrated species tree for Agama, and their close relatives, using a hybrid phylogenetic-phylogenomic approach that combines traditional Sanger sequence data from five loci for 57 species (146 samples) with anchored phylogenomic data from 215 nuclear genes for 23 species. The Sanger data are analyzed using coalescent-based species tree inference using (*)BEAST, and the resulting posterior distribution of species trees is attenuated using the phylogenomic tree as a backbone constraint. The result is a time-calibrated species tree for Agama that includes 95% of all species, multiple samples for most species, strong support for the major clades, and strong support for most of the initial divergence events. Diversification within Agama began approximately 23 million years ago (Ma), and separate radiations in Southern, East, West, and Northern Africa have been diversifying for >10Myr. A suite of traits (morphological, coloration, and sociality) are tightly correlated and show a strong signal of high morphological disparity within clades, whereby the subsequent evolution of convergent phenotypes has accompanied diversification into new biogeographic areas.


Assuntos
Evolução Biológica , Lagartos/classificação , Filogenia , África , Animais , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Funções Verossimilhança , Lagartos/genética , Modelos Genéticos , Dados de Sequência Molecular , Filogeografia , Análise de Sequência de DNA
20.
Sci Rep ; 14(1): 9489, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664489

RESUMO

Asian mock vipers of the genus Psammodynastes and African forest snakes of the genus Buhoma are two genera belonging to the snake superfamily Elapoidea. The phylogenetic placements of Psammodynastes and Buhoma within Elapoidea has been extremely unstable which has resulted in their uncertain and debated taxonomy. We used ultraconserved elements and traditional nuclear and mitochondrial markers to infer the phylogenetic relationships of these two genera with other elapoids. Psammodynastes, for which a reference genome has been sequenced, were found, with strong branch support, to be a relatively early diverging split within Elapoidea that is sister to a clade consisting of Elapidae, Micrelapidae and Lamprophiidae. Hence, we allocate Psammodynastes to its own family, Psammodynastidae new family. However, the phylogenetic position of Buhoma could not be resolved with a high degree of confidence. Attempts to identify the possible sources of conflict in the rapid radiation of elapoid snakes suggest that both hybridisation/introgression during the rapid diversification, including possible ghost introgression, as well as incomplete lineage sorting likely have had a confounding role. The usual practice of combining mitochondrial loci with nuclear genomic data appears to mislead phylogeny reconstructions in rapid radiation scenarios, especially in the absence of genome scale data.


Assuntos
Filogenia , Serpentes , Animais , Serpentes/genética , Serpentes/classificação , Viperidae/genética , Viperidae/classificação , Genômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA